(feat) final refactor of strategies configs

This commit is contained in:
cardosofede
2023-07-20 16:02:55 +02:00
parent 61a60d133d
commit 00db641a67
4 changed files with 43 additions and 73 deletions

View File

@@ -8,8 +8,7 @@ from quants_lab.labeling.triple_barrier_method import triple_barrier_method
class DirectionalStrategyBase:
def __init__(self, config: BaseModel):
def __init__(self, config):
self.config = config
def get_data(self, start: Optional[str] = None, end: Optional[str] = None):

View File

@@ -15,32 +15,22 @@ class BollingerConf(BaseModel):
class Bollinger(DirectionalStrategyBase):
def __init__(self, config: BollingerConf):
super().__init__(config)
self.exchange = config.exchange
self.trading_pair = config.trading_pair
self.interval = config.interval
self.bb_length = config.bb_length
self.bb_std = config.bb_std
self.bb_long_threshold = config.bb_long_threshold
self.bb_short_threshold = config.bb_short_threshold
def get_raw_data(self):
df = self.get_candles(
exchange=self.exchange,
trading_pair=self.trading_pair,
interval=self.interval,
exchange=self.config.exchange,
trading_pair=self.config.trading_pair,
interval=self.config.interval,
)
return df
def preprocessing(self, df):
df.ta.bbands(length=self.bb_length, std=self.bb_std, append=True)
df.ta.bbands(length=self.config.bb_length, std=self.config.bb_std, append=True)
return df
def predict(self, df):
df["side"] = 0
long_condition = df[f"BBP_{self.bb_length}_{self.bb_std}"] < self.bb_long_threshold
short_condition = df[f"BBP_{self.bb_length}_{self.bb_std}"] > self.bb_short_threshold
long_condition = df[f"BBP_{self.config.bb_length}_{self.config.bb_std}"] < self.config.bb_long_threshold
short_condition = df[f"BBP_{self.config.bb_length}_{self.config.bb_std}"] > self.config.bb_short_threshold
df.loc[long_condition, "side"] = 1
df.loc[short_condition, "side"] = -1
return df

View File

@@ -1,52 +1,43 @@
import pandas_ta as ta
from pydantic import BaseModel, Field
from quants_lab.strategy.directional_strategy_base import DirectionalStrategyBase
from quants_lab.utils import data_management
class MACDBBConfig(BaseModel):
exchange: str = Field(default="binance_perpetual")
trading_pair: str = Field(default="ETH-USDT")
interval: str = Field(default="1h")
bb_length: int = Field(default=24, ge=2, le=1000)
bb_std: float = Field(default=2.0, ge=0.5, le=4.0)
bb_long_threshold: float = Field(default=0.0, ge=-3.0, le=0.5)
bb_short_threshold: float = Field(default=1.0, ge=0.5, le=3.0)
fast_macd: int = Field(default=21, ge=2, le=100)
slow_macd: int = Field(default=42, ge=fast_macd, le=1000)
signal_macd: int = Field(default=9, ge=2, le=100)
class MACDBB(DirectionalStrategyBase):
def __init__(self,
exchange="binance_perpetual",
trading_pair="ETH-USDT",
interval="1h",
bb_length=24,
bb_std=2.0,
bb_long_threshold=0.05,
bb_short_threshold=0.95,
fast_macd=21,
slow_macd=42,
signal_macd=9):
self.exchange = exchange
self.trading_pair = trading_pair
self.interval = interval
self.bb_length = bb_length
self.bb_std = bb_std
self.bb_long_threshold = bb_long_threshold
self.bb_short_threshold = bb_short_threshold
self.fast_macd = fast_macd
self.slow_macd = slow_macd
self.signal_macd = signal_macd
class MacdBollinger(DirectionalStrategyBase):
def get_raw_data(self):
df = data_management.get_dataframe(
exchange=self.exchange,
trading_pair=self.trading_pair,
interval=self.interval,
df = self.get_candles(
exchange=self.config.exchange,
trading_pair=self.config.trading_pair,
interval=self.config.interval,
)
return df
def preprocessing(self, df):
df.ta.bbands(length=self.bb_length, std=self.bb_std, append=True)
df.ta.macd(fast=self.fast_macd, slow=self.slow_macd, signal=self.signal_macd, append=True)
df.ta.bbands(length=self.config.bb_length, std=self.config.bb_std, append=True)
df.ta.macd(fast=self.config.fast_macd, slow=self.config.slow_macd, signal=self.config.signal_macd, append=True)
return df
def predict(self, df):
bbp = df[f"BBP_{self.bb_length}_{self.bb_std}"]
macdh = df[f"MACDh_{self.fast_macd}_{self.slow_macd}_{self.signal_macd}"]
macd = df[f"MACD_{self.fast_macd}_{self.slow_macd}_{self.signal_macd}"]
bbp = df[f"BBP_{self.config.bb_length}_{self.config.bb_std}"]
macdh = df[f"MACDh_{self.config.fast_macd}_{self.config.slow_macd}_{self.config.signal_macd}"]
macd = df[f"MACD_{self.config.fast_macd}_{self.config.slow_macd}_{self.config.signal_macd}"]
long_condition = (bbp < self.bb_long_threshold) & (macdh > 0) & (macd < 0)
short_condition = (bbp > self.bb_short_threshold) & (macdh < 0) & (macd > 0)
long_condition = (bbp < self.config.bb_long_threshold) & (macdh > 0) & (macd < 0)
short_condition = (bbp > self.config.bb_short_threshold) & (macdh < 0) & (macd > 0)
df["side"] = 0
df.loc[long_condition, "side"] = 1

View File

@@ -16,26 +16,16 @@ class StatArbConfig(BaseModel):
class StatArb(DirectionalStrategyBase):
def __init__(self, config: StatArbConfig):
super().__init__(config)
self.exchange = config.exchange
self.trading_pair = config.trading_pair
self.target_trading_pair = config.target_trading_pair
self.interval = config.interval
self.lookback = config.lookback
self.z_score_long = config.z_score_long
self.z_score_short = config.z_score_short
def get_raw_data(self):
df = self.get_candles(
exchange=self.exchange,
trading_pair=self.trading_pair,
interval=self.interval,
exchange=self.config.exchange,
trading_pair=self.config.trading_pair,
interval=self.config.interval,
)
df_target = self.get_candles(
exchange=self.exchange,
trading_pair=self.target_trading_pair,
interval=self.interval,
exchange=self.config.exchange,
trading_pair=self.config.target_trading_pair,
interval=self.config.interval,
)
df = pd.merge(df, df_target, on="timestamp", how='inner', suffixes=('', '_target'))
return df
@@ -44,14 +34,14 @@ class StatArb(DirectionalStrategyBase):
df["pct_change_original"] = df["close"].pct_change()
df["pct_change_target"] = df["close_target"].pct_change()
df["spread"] = df["pct_change_target"] - df["pct_change_original"]
df["cum_spread"] = df["spread"].rolling(self.lookback).sum()
df["z_score"] = ta.zscore(df["cum_spread"], length=self.lookback)
df["cum_spread"] = df["spread"].rolling(self.config.lookback).sum()
df["z_score"] = ta.zscore(df["cum_spread"], length=self.config.lookback)
return df
def predict(self, df):
df["side"] = 0
short_condition = df["z_score"] < - self.z_score_short
long_condition = df["z_score"] > self.z_score_long
short_condition = df["z_score"] < - self.config.z_score_short
long_condition = df["z_score"] > self.config.z_score_long
df.loc[long_condition, "side"] = 1
df.loc[short_condition, "side"] = -1
return df