Compare commits
23 Commits
sv3d_gradi
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e8cd657656 | ||
|
|
0a4ea360db | ||
|
|
8f41cbc50b | ||
|
|
f87e52e72c | ||
|
|
0ad7de9a5c | ||
|
|
c3147b86db | ||
|
|
1659a1c09b | ||
|
|
37ab71e234 | ||
|
|
e90e953330 | ||
|
|
da40ebad4e | ||
|
|
50364a7d2f | ||
|
|
2cea114cc1 | ||
|
|
734195d1c9 | ||
|
|
854bd4f0df | ||
|
|
e0596f1aca | ||
|
|
ce1576bfca | ||
|
|
1cd0cbaff4 | ||
|
|
863665548f | ||
|
|
e3e4b9d263 | ||
|
|
1aa06e5995 | ||
|
|
998cb122d3 | ||
|
|
31fe459a85 | ||
|
|
abe9ed3d40 |
4
.gitignore
vendored
@@ -11,4 +11,6 @@
|
||||
/dist
|
||||
/outputs
|
||||
/build
|
||||
/src
|
||||
/src
|
||||
/.vscode
|
||||
**/__pycache__/
|
||||
|
||||
72
README.md
Normal file → Executable file
@@ -4,6 +4,72 @@
|
||||
|
||||
## News
|
||||
|
||||
|
||||
**May 20, 2025**
|
||||
- We are releasing **[Stable Video 4D 2.0 (SV4D 2.0)](https://huggingface.co/stabilityai/sv4d2.0)**, an enhanced video-to-4D diffusion model for high-fidelity novel-view video synthesis and 4D asset generation. For research purposes:
|
||||
- **SV4D 2.0** was trained to generate 48 frames (12 video frames x 4 camera views) at 576x576 resolution, given a 12-frame input video of the same size, ideally consisting of white-background images of a moving object.
|
||||
- Compared to our previous 4D model [SV4D](https://huggingface.co/stabilityai/sv4d), **SV4D 2.0** can generate videos with higher fidelity, sharper details during motion, and better spatio-temporal consistency. It also generalizes much better to real-world videos. Moreover, it does not rely on refernce multi-view of the first frame generated by SV3D, making it more robust to self-occlusions.
|
||||
- To generate longer novel-view videos, we autoregressively generate 12 frames at a time and use the previous generation as conditioning views for the remaining frames.
|
||||
- Please check our [project page](https://sv4d20.github.io), [arxiv paper](https://arxiv.org/pdf/2503.16396) and [video summary](https://www.youtube.com/watch?v=dtqj-s50ynU) for more details.
|
||||
|
||||
**QUICKSTART** :
|
||||
- `python scripts/sampling/simple_video_sample_4d2.py --input_path assets/sv4d_videos/camel.gif --output_folder outputs` (after downloading [sv4d2.safetensors](https://huggingface.co/stabilityai/sv4d2.0) from HuggingFace into `checkpoints/`)
|
||||
|
||||
To run **SV4D 2.0** on a single input video of 21 frames:
|
||||
- Download SV4D 2.0 model (`sv4d2.safetensors`) from [here](https://huggingface.co/stabilityai/sv4d2.0) to `checkpoints/`: `huggingface-cli download stabilityai/sv4d2.0 sv4d2.safetensors --local-dir checkpoints`
|
||||
- Run inference: `python scripts/sampling/simple_video_sample_4d2.py --input_path <path/to/video>`
|
||||
- `input_path` : The input video `<path/to/video>` can be
|
||||
- a single video file in `gif` or `mp4` format, such as `assets/sv4d_videos/camel.gif`, or
|
||||
- a folder containing images of video frames in `.jpg`, `.jpeg`, or `.png` format, or
|
||||
- a file name pattern matching images of video frames.
|
||||
- `num_steps` : default is 50, can decrease to it to shorten sampling time.
|
||||
- `elevations_deg` : specified elevations (reletive to input view), default is 0.0 (same as input view).
|
||||
- **Background removal** : For input videos with plain background, (optionally) use [rembg](https://github.com/danielgatis/rembg) to remove background and crop video frames by setting `--remove_bg=True`. To obtain higher quality outputs on real-world input videos with noisy background, try segmenting the foreground object using [Clipdrop](https://clipdrop.co/) or [SAM2](https://github.com/facebookresearch/segment-anything-2) before running SV4D.
|
||||
- **Low VRAM environment** : To run on GPUs with low VRAM, try setting `--encoding_t=1` (of frames encoded at a time) and `--decoding_t=1` (of frames decoded at a time) or lower video resolution like `--img_size=512`.
|
||||
|
||||
Notes:
|
||||
- We also train a 8-view model that generates 5 frames x 8 views at a time (same as SV4D).
|
||||
- Download the model from huggingface: `huggingface-cli download stabilityai/sv4d2.0 sv4d2_8views.safetensors --local-dir checkpoints`
|
||||
- Run inference: `python scripts/sampling/simple_video_sample_4d2.py --model_path checkpoints/sv4d2_8views.safetensors --input_path assets/sv4d_videos/chest.gif --output_folder outputs`
|
||||
- The 5x8 model takes 5 frames of input at a time. But the inference scripts for both model take 21-frame video as input by default (same as SV3D and SV4D), we run the model autoregressively until we generate 21 frames.
|
||||
- Install dependencies before running:
|
||||
```
|
||||
python3.10 -m venv .generativemodels
|
||||
source .generativemodels/bin/activate
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # check CUDA version
|
||||
pip3 install -r requirements/pt2.txt
|
||||
pip3 install .
|
||||
pip3 install -e git+https://github.com/Stability-AI/datapipelines.git@main#egg=sdata
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
**July 24, 2024**
|
||||
- We are releasing **[Stable Video 4D (SV4D)](https://huggingface.co/stabilityai/sv4d)**, a video-to-4D diffusion model for novel-view video synthesis. For research purposes:
|
||||
- **SV4D** was trained to generate 40 frames (5 video frames x 8 camera views) at 576x576 resolution, given 5 context frames (the input video), and 8 reference views (synthesised from the first frame of the input video, using a multi-view diffusion model like SV3D) of the same size, ideally white-background images with one object.
|
||||
- To generate longer novel-view videos (21 frames), we propose a novel sampling method using SV4D, by first sampling 5 anchor frames and then densely sampling the remaining frames while maintaining temporal consistency.
|
||||
- To run the community-build gradio demo locally, run `python -m scripts.demo.gradio_app_sv4d`.
|
||||
- Please check our [project page](https://sv4d.github.io), [tech report](https://sv4d.github.io/static/sv4d_technical_report.pdf) and [video summary](https://www.youtube.com/watch?v=RBP8vdAWTgk) for more details.
|
||||
|
||||
**QUICKSTART** : `python scripts/sampling/simple_video_sample_4d.py --input_path assets/sv4d_videos/test_video1.mp4 --output_folder outputs/sv4d` (after downloading [sv4d.safetensors](https://huggingface.co/stabilityai/sv4d) and [sv3d_u.safetensors](https://huggingface.co/stabilityai/sv3d) from HuggingFace into `checkpoints/`)
|
||||
|
||||
To run **SV4D** on a single input video of 21 frames:
|
||||
- Download SV3D models (`sv3d_u.safetensors` and `sv3d_p.safetensors`) from [here](https://huggingface.co/stabilityai/sv3d) and SV4D model (`sv4d.safetensors`) from [here](https://huggingface.co/stabilityai/sv4d) to `checkpoints/`
|
||||
- Run `python scripts/sampling/simple_video_sample_4d.py --input_path <path/to/video>`
|
||||
- `input_path` : The input video `<path/to/video>` can be
|
||||
- a single video file in `gif` or `mp4` format, such as `assets/sv4d_videos/test_video1.mp4`, or
|
||||
- a folder containing images of video frames in `.jpg`, `.jpeg`, or `.png` format, or
|
||||
- a file name pattern matching images of video frames.
|
||||
- `num_steps` : default is 20, can increase to 50 for better quality but longer sampling time.
|
||||
- `sv3d_version` : To specify the SV3D model to generate reference multi-views, set `--sv3d_version=sv3d_u` for SV3D_u or `--sv3d_version=sv3d_p` for SV3D_p.
|
||||
- `elevations_deg` : To generate novel-view videos at a specified elevation (default elevation is 10) using SV3D_p (default is SV3D_u), run `python scripts/sampling/simple_video_sample_4d.py --input_path assets/sv4d_videos/test_video1.mp4 --sv3d_version sv3d_p --elevations_deg 30.0`
|
||||
- **Background removal** : For input videos with plain background, (optionally) use [rembg](https://github.com/danielgatis/rembg) to remove background and crop video frames by setting `--remove_bg=True`. To obtain higher quality outputs on real-world input videos with noisy background, try segmenting the foreground object using [Clipdrop](https://clipdrop.co/) or [SAM2](https://github.com/facebookresearch/segment-anything-2) before running SV4D.
|
||||
- **Low VRAM environment** : To run on GPUs with low VRAM, try setting `--encoding_t=1` (of frames encoded at a time) and `--decoding_t=1` (of frames decoded at a time) or lower video resolution like `--img_size=512`.
|
||||
|
||||

|
||||
|
||||
|
||||
**March 18, 2024**
|
||||
- We are releasing **[SV3D](https://huggingface.co/stabilityai/sv3d)**, an image-to-video model for novel multi-view synthesis, for research purposes:
|
||||
- **SV3D** was trained to generate 21 frames at resolution 576x576, given 1 context frame of the same size, ideally a white-background image with one object.
|
||||
@@ -27,9 +93,6 @@ To run SVD or SV3D on a streamlit server:
|
||||

|
||||
|
||||
|
||||
**November 30, 2023**
|
||||
- Following the launch of SDXL-Turbo, we are releasing [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo).
|
||||
|
||||
**November 28, 2023**
|
||||
- We are releasing SDXL-Turbo, a lightning fast text-to image model.
|
||||
Alongside the model, we release a [technical report](https://stability.ai/research/adversarial-diffusion-distillation)
|
||||
@@ -138,6 +201,7 @@ This is assuming you have navigated to the `generative-models` root after clonin
|
||||
# install required packages from pypi
|
||||
python3 -m venv .pt2
|
||||
source .pt2/bin/activate
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
||||
pip3 install -r requirements/pt2.txt
|
||||
```
|
||||
|
||||
@@ -190,8 +254,6 @@ The following models are currently supported:
|
||||
```
|
||||
- [SDXL-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9)
|
||||
- [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9)
|
||||
- [SD-2.1-512](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.safetensors)
|
||||
- [SD-2.1-768](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors)
|
||||
|
||||
**Weights for SDXL**:
|
||||
|
||||
|
||||
BIN
assets/sv4d.gif
Normal file
|
After Width: | Height: | Size: 8.0 MiB |
BIN
assets/sv4d2.gif
Normal file
|
After Width: | Height: | Size: 9.7 MiB |
BIN
assets/sv4d_videos/bear.gif
Normal file
|
After Width: | Height: | Size: 2.2 MiB |
BIN
assets/sv4d_videos/bee.gif
Normal file
|
After Width: | Height: | Size: 638 KiB |
BIN
assets/sv4d_videos/bmx-bumps.gif
Normal file
|
After Width: | Height: | Size: 2.2 MiB |
BIN
assets/sv4d_videos/camel.gif
Normal file
|
After Width: | Height: | Size: 1.9 MiB |
BIN
assets/sv4d_videos/chameleon.gif
Normal file
|
After Width: | Height: | Size: 1.4 MiB |
BIN
assets/sv4d_videos/chest.gif
Normal file
|
After Width: | Height: | Size: 2.2 MiB |
BIN
assets/sv4d_videos/cows.gif
Normal file
|
After Width: | Height: | Size: 1.7 MiB |
BIN
assets/sv4d_videos/dance-twirl.gif
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
BIN
assets/sv4d_videos/flag.gif
Normal file
|
After Width: | Height: | Size: 2.1 MiB |
BIN
assets/sv4d_videos/gear.gif
Normal file
|
After Width: | Height: | Size: 446 KiB |
BIN
assets/sv4d_videos/hike.gif
Normal file
|
After Width: | Height: | Size: 1.6 MiB |
BIN
assets/sv4d_videos/horsejump-low.gif
Normal file
|
After Width: | Height: | Size: 1.4 MiB |
BIN
assets/sv4d_videos/robot.gif
Normal file
|
After Width: | Height: | Size: 946 KiB |
BIN
assets/sv4d_videos/snowboard.gif
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
BIN
assets/sv4d_videos/test_video1.mp4
Normal file
BIN
assets/sv4d_videos/windmill.gif
Normal file
|
After Width: | Height: | Size: 2.4 MiB |
@@ -1,60 +0,0 @@
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
disable_first_stage_autocast: True
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||
params:
|
||||
num_idx: 1000
|
||||
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [4, 2, 1]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
num_head_channels: 64
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: False
|
||||
input_key: txt
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: true
|
||||
layer: penultimate
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
@@ -1,60 +0,0 @@
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
disable_first_stage_autocast: True
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||||
params:
|
||||
num_idx: 1000
|
||||
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
use_checkpoint: True
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [4, 2, 1]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
num_head_channels: 64
|
||||
use_linear_in_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 1024
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
- is_trainable: False
|
||||
input_key: txt
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
||||
params:
|
||||
freeze: true
|
||||
layer: penultimate
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
@@ -1,58 +0,0 @@
|
||||
STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE AGREEMENT
|
||||
Dated: November 28, 2023
|
||||
|
||||
|
||||
By using or distributing any portion or element of the Models, Software, Software Products or Derivative Works, you agree to be bound by this Agreement.
|
||||
|
||||
|
||||
"Agreement" means this Stable Non-Commercial Research Community License Agreement.
|
||||
|
||||
|
||||
“AUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
|
||||
|
||||
|
||||
"Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Model’s output. For clarity, Derivative Works do not include the output of any Model.
|
||||
|
||||
|
||||
“Documentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
|
||||
|
||||
|
||||
"Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
|
||||
|
||||
|
||||
“Model(s)" means, collectively, Stability AI’s proprietary models and algorithms, including machine-learning models, trained model weights and other elements of the foregoing, made available under this Agreement.
|
||||
|
||||
|
||||
“Non-Commercial Uses” means exercising any of the rights granted herein for the purpose of research or non-commercial purposes. Non-Commercial Uses does not include any production use of the Software Products or any Derivative Works.
|
||||
|
||||
|
||||
"Stability AI" or "we" means Stability AI Ltd. and its affiliates.
|
||||
|
||||
"Software" means Stability AI’s proprietary software made available under this Agreement.
|
||||
|
||||
|
||||
“Software Products” means the Models, Software and Documentation, individually or in any combination.
|
||||
|
||||
|
||||
|
||||
1. License Rights and Redistribution.
|
||||
|
||||
a. Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s intellectual property or other rights owned or controlled by Stability AI embodied in the Software Products to reproduce the Software Products and produce, reproduce, distribute, and create Derivative Works of the Software Products for Non-Commercial Uses only, respectively.
|
||||
|
||||
b. You may not use the Software Products or Derivative Works to enable third parties to use the Software Products or Derivative Works as part of your hosted service or via your APIs, whether you are adding substantial additional functionality thereto or not. Merely distributing the Software Products or Derivative Works for download online without offering any related service (ex. by distributing the Models on HuggingFace) is not a violation of this subsection. If you wish to use the Software Products or any Derivative Works for commercial or production use or you wish to make the Software Products or any Derivative Works available to third parties via your hosted service or your APIs, contact Stability AI at https://stability.ai/contact.
|
||||
|
||||
c. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "This Stability AI Model is licensed under the Stability AI Non-Commercial Research Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
|
||||
|
||||
2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS, DERIVATIVE WORKS OR ANY OUTPUT OR RESULTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS, DERIVATIVE WORKS AND ANY OUTPUT AND RESULTS.
|
||||
|
||||
3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
||||
|
||||
4. Intellectual Property.
|
||||
|
||||
a. No trademark licenses are granted under this Agreement, and in connection with the Software Products or Derivative Works, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products or Derivative Works.
|
||||
|
||||
b. Subject to Stability AI’s ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works
|
||||
|
||||
c. If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products, Derivative Works or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products or Derivative Works in violation of this Agreement.
|
||||
|
||||
5. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of any Software Products or Derivative Works. Sections 2-4 shall survive the termination of this Agreement.
|
||||
@@ -5,13 +5,16 @@ einops>=0.6.1
|
||||
fairscale>=0.4.13
|
||||
fire>=0.5.0
|
||||
fsspec>=2023.6.0
|
||||
imageio[ffmpeg]
|
||||
imageio[pyav]
|
||||
invisible-watermark>=0.2.0
|
||||
kornia==0.6.9
|
||||
matplotlib>=3.7.2
|
||||
natsort>=8.4.0
|
||||
ninja>=1.11.1
|
||||
numpy>=1.24.4
|
||||
numpy==2.1
|
||||
omegaconf>=2.3.0
|
||||
onnxruntime
|
||||
open-clip-torch>=2.20.0
|
||||
opencv-python==4.6.0.66
|
||||
pandas>=2.0.3
|
||||
|
||||
496
scripts/demo/gradio_app_sv4d.py
Normal file
@@ -0,0 +1,496 @@
|
||||
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), "generative-models"))
|
||||
|
||||
from glob import glob
|
||||
from typing import Optional
|
||||
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from typing import List, Optional, Union
|
||||
import torchvision
|
||||
|
||||
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
|
||||
from scripts.demo.sv4d_helpers import (
|
||||
decode_latents,
|
||||
load_model,
|
||||
initial_model_load,
|
||||
read_video,
|
||||
run_img2vid,
|
||||
prepare_inputs,
|
||||
do_sample_per_step,
|
||||
sample_sv3d,
|
||||
save_video,
|
||||
preprocess_video,
|
||||
)
|
||||
|
||||
|
||||
# the tmp path, if /tmp/gradio is not writable, change it to a writable path
|
||||
# os.environ["GRADIO_TEMP_DIR"] = "gradio_tmp"
|
||||
|
||||
version = "sv4d" # replace with 'sv3d_p' or 'sv3d_u' for other models
|
||||
|
||||
# Define the repo, local directory and filename
|
||||
repo_id = "stabilityai/sv4d"
|
||||
filename = f"{version}.safetensors" # replace with "sv3d_u.safetensors" or "sv3d_p.safetensors"
|
||||
local_dir = "checkpoints"
|
||||
local_ckpt_path = os.path.join(local_dir, filename)
|
||||
|
||||
# Check if the file already exists
|
||||
if not os.path.exists(local_ckpt_path):
|
||||
# If the file doesn't exist, download it
|
||||
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
||||
print("File downloaded. (sv4d)")
|
||||
else:
|
||||
print("File already exists. No need to download. (sv4d)")
|
||||
|
||||
device = "cuda"
|
||||
max_64_bit_int = 2**63 - 1
|
||||
|
||||
num_frames = 21
|
||||
num_steps = 20
|
||||
model_config = f"scripts/sampling/configs/{version}.yaml"
|
||||
|
||||
# Set model config
|
||||
T = 5 # number of frames per sample
|
||||
V = 8 # number of views per sample
|
||||
F = 8 # vae factor to downsize image->latent
|
||||
C = 4
|
||||
H, W = 576, 576
|
||||
n_frames = 21 # number of input and output video frames
|
||||
n_views = V + 1 # number of output video views (1 input view + 8 novel views)
|
||||
n_views_sv3d = 21
|
||||
subsampled_views = np.array(
|
||||
[0, 2, 5, 7, 9, 12, 14, 16, 19]
|
||||
) # subsample (V+1=)9 (uniform) views from 21 SV3D views
|
||||
|
||||
version_dict = {
|
||||
"T": T * V,
|
||||
"H": H,
|
||||
"W": W,
|
||||
"C": C,
|
||||
"f": F,
|
||||
"options": {
|
||||
"discretization": 1,
|
||||
"cfg": 3,
|
||||
"sigma_min": 0.002,
|
||||
"sigma_max": 700.0,
|
||||
"rho": 7.0,
|
||||
"guider": 5,
|
||||
"num_steps": num_steps,
|
||||
"force_uc_zero_embeddings": [
|
||||
"cond_frames",
|
||||
"cond_frames_without_noise",
|
||||
"cond_view",
|
||||
"cond_motion",
|
||||
],
|
||||
"additional_guider_kwargs": {
|
||||
"additional_cond_keys": ["cond_view", "cond_motion"]
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
# Load SV4D model
|
||||
model, filter = load_model(
|
||||
model_config,
|
||||
device,
|
||||
version_dict["T"],
|
||||
num_steps,
|
||||
)
|
||||
model = initial_model_load(model)
|
||||
|
||||
# -----------sv3d config and model loading----------------
|
||||
# if version == "sv3d_u":
|
||||
sv3d_model_config = "scripts/sampling/configs/sv3d_u.yaml"
|
||||
# elif version == "sv3d_p":
|
||||
# sv3d_model_config = "scripts/sampling/configs/sv3d_p.yaml"
|
||||
# else:
|
||||
# raise ValueError(f"Version {version} does not exist.")
|
||||
|
||||
# Define the repo, local directory and filename
|
||||
repo_id = "stabilityai/sv3d"
|
||||
filename = f"sv3d_u.safetensors" # replace with "sv3d_u.safetensors" or "sv3d_p.safetensors"
|
||||
local_dir = "checkpoints"
|
||||
local_ckpt_path = os.path.join(local_dir, filename)
|
||||
|
||||
# Check if the file already exists
|
||||
if not os.path.exists(local_ckpt_path):
|
||||
# If the file doesn't exist, download it
|
||||
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
||||
print("File downloaded. (sv3d)")
|
||||
else:
|
||||
print("File already exists. No need to download. (sv3d)")
|
||||
|
||||
# load sv3d model
|
||||
sv3d_model, filter = load_model(
|
||||
sv3d_model_config,
|
||||
device,
|
||||
21,
|
||||
num_steps,
|
||||
verbose=False,
|
||||
)
|
||||
sv3d_model = initial_model_load(sv3d_model)
|
||||
# ------------------
|
||||
|
||||
def sample_anchor(
|
||||
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
||||
seed: Optional[int] = None,
|
||||
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
num_steps: int = 20,
|
||||
sv3d_version: str = "sv3d_u", # sv3d_u or sv3d_p
|
||||
fps_id: int = 6,
|
||||
motion_bucket_id: int = 127,
|
||||
cond_aug: float = 1e-5,
|
||||
device: str = "cuda",
|
||||
elevations_deg: Optional[Union[float, List[float]]] = 10.0,
|
||||
azimuths_deg: Optional[List[float]] = None,
|
||||
verbose: Optional[bool] = False,
|
||||
):
|
||||
"""
|
||||
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
||||
"""
|
||||
output_folder = os.path.dirname(input_path)
|
||||
|
||||
torch.manual_seed(seed)
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
# Read input video frames i.e. images at view 0
|
||||
print(f"Reading {input_path}")
|
||||
images_v0 = read_video(
|
||||
input_path,
|
||||
n_frames=n_frames,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Get camera viewpoints
|
||||
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
|
||||
elevations_deg = [elevations_deg] * n_views_sv3d
|
||||
assert (
|
||||
len(elevations_deg) == n_views_sv3d
|
||||
), f"Please provide 1 value, or a list of {n_views_sv3d} values for elevations_deg! Given {len(elevations_deg)}"
|
||||
if azimuths_deg is None:
|
||||
azimuths_deg = np.linspace(0, 360, n_views_sv3d + 1)[1:] % 360
|
||||
assert (
|
||||
len(azimuths_deg) == n_views_sv3d
|
||||
), f"Please provide a list of {n_views_sv3d} values for azimuths_deg! Given {len(azimuths_deg)}"
|
||||
polars_rad = np.array([np.deg2rad(90 - e) for e in elevations_deg])
|
||||
azimuths_rad = np.array(
|
||||
[np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
|
||||
)
|
||||
|
||||
# Sample multi-view images of the first frame using SV3D i.e. images at time 0
|
||||
sv3d_model.sampler.num_steps = num_steps
|
||||
print("sv3d_model.sampler.num_steps", sv3d_model.sampler.num_steps)
|
||||
images_t0 = sample_sv3d(
|
||||
images_v0[0],
|
||||
n_views_sv3d,
|
||||
num_steps,
|
||||
sv3d_version,
|
||||
fps_id,
|
||||
motion_bucket_id,
|
||||
cond_aug,
|
||||
decoding_t,
|
||||
device,
|
||||
polars_rad,
|
||||
azimuths_rad,
|
||||
verbose,
|
||||
sv3d_model,
|
||||
)
|
||||
images_t0 = torch.roll(images_t0, 1, 0) # move conditioning image to first frame
|
||||
|
||||
sv3d_file = os.path.join(output_folder, "t000.mp4")
|
||||
save_video(sv3d_file, images_t0.unsqueeze(1))
|
||||
|
||||
for emb in model.conditioner.embedders:
|
||||
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
|
||||
emb.en_and_decode_n_samples_a_time = encoding_t
|
||||
model.en_and_decode_n_samples_a_time = decoding_t
|
||||
# Initialize image matrix
|
||||
img_matrix = [[None] * n_views for _ in range(n_frames)]
|
||||
for i, v in enumerate(subsampled_views):
|
||||
img_matrix[0][i] = images_t0[v].unsqueeze(0)
|
||||
for t in range(n_frames):
|
||||
img_matrix[t][0] = images_v0[t]
|
||||
|
||||
# Interleaved sampling for anchor frames
|
||||
t0, v0 = 0, 0
|
||||
frame_indices = np.arange(T - 1, n_frames, T - 1) # [4, 8, 12, 16, 20]
|
||||
view_indices = np.arange(V) + 1
|
||||
print(f"Sampling anchor frames {frame_indices}")
|
||||
image = img_matrix[t0][v0]
|
||||
cond_motion = torch.cat([img_matrix[t][v0] for t in frame_indices], 0)
|
||||
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
|
||||
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
|
||||
model.sampler.num_steps = num_steps
|
||||
version_dict["options"]["num_steps"] = num_steps
|
||||
samples = run_img2vid(
|
||||
version_dict, model, image, seed, polars, azims, cond_motion, cond_view, decoding_t
|
||||
)
|
||||
samples = samples.view(T, V, 3, H, W)
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
if img_matrix[t][v] is None:
|
||||
img_matrix[t][v] = samples[i, j][None] * 2 - 1
|
||||
|
||||
# concat video
|
||||
grid_list = []
|
||||
for t in frame_indices:
|
||||
imgs_view = torch.cat(img_matrix[t])
|
||||
grid_list.append(torchvision.utils.make_grid(imgs_view, nrow=3).unsqueeze(0))
|
||||
# save output videos
|
||||
anchor_vis_file = os.path.join(output_folder, "anchor_vis.mp4")
|
||||
save_video(anchor_vis_file, grid_list, fps=3)
|
||||
anchor_file = os.path.join(output_folder, "anchor.mp4")
|
||||
image_list = samples.view(T*V, 3, H, W).unsqueeze(1) * 2 - 1
|
||||
save_video(anchor_file, image_list)
|
||||
|
||||
return sv3d_file, anchor_vis_file, anchor_file
|
||||
|
||||
|
||||
def sample_all(
|
||||
input_path: str = "inputs/test_video1.mp4", # Can either be video file or folder with image files
|
||||
sv3d_path: str = "outputs/sv4d/000000_t000.mp4",
|
||||
anchor_path: str = "outputs/sv4d/000000_anchor.mp4",
|
||||
seed: Optional[int] = None,
|
||||
num_steps: int = 20,
|
||||
device: str = "cuda",
|
||||
elevations_deg: Optional[Union[float, List[float]]] = 10.0,
|
||||
azimuths_deg: Optional[List[float]] = None,
|
||||
):
|
||||
"""
|
||||
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
||||
"""
|
||||
output_folder = os.path.dirname(input_path)
|
||||
torch.manual_seed(seed)
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
# Read input video frames i.e. images at view 0
|
||||
print(f"Reading {input_path}")
|
||||
images_v0 = read_video(
|
||||
input_path,
|
||||
n_frames=n_frames,
|
||||
device=device,
|
||||
)
|
||||
|
||||
images_t0 = read_video(
|
||||
sv3d_path,
|
||||
n_frames=n_views_sv3d,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Get camera viewpoints
|
||||
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
|
||||
elevations_deg = [elevations_deg] * n_views_sv3d
|
||||
assert (
|
||||
len(elevations_deg) == n_views_sv3d
|
||||
), f"Please provide 1 value, or a list of {n_views_sv3d} values for elevations_deg! Given {len(elevations_deg)}"
|
||||
if azimuths_deg is None:
|
||||
azimuths_deg = np.linspace(0, 360, n_views_sv3d + 1)[1:] % 360
|
||||
assert (
|
||||
len(azimuths_deg) == n_views_sv3d
|
||||
), f"Please provide a list of {n_views_sv3d} values for azimuths_deg! Given {len(azimuths_deg)}"
|
||||
polars_rad = np.array([np.deg2rad(90 - e) for e in elevations_deg])
|
||||
azimuths_rad = np.array(
|
||||
[np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
|
||||
)
|
||||
|
||||
# Initialize image matrix
|
||||
img_matrix = [[None] * n_views for _ in range(n_frames)]
|
||||
for i, v in enumerate(subsampled_views):
|
||||
img_matrix[0][i] = images_t0[v]
|
||||
for t in range(n_frames):
|
||||
img_matrix[t][0] = images_v0[t]
|
||||
|
||||
# load interleaved sampling for anchor frames
|
||||
t0, v0 = 0, 0
|
||||
frame_indices = np.arange(T - 1, n_frames, T - 1) # [4, 8, 12, 16, 20]
|
||||
view_indices = np.arange(V) + 1
|
||||
|
||||
anchor_frames = read_video(
|
||||
anchor_path,
|
||||
n_frames=T * V,
|
||||
device=device,
|
||||
)
|
||||
anchor_frames = torch.cat(anchor_frames).view(T, V, 3, H, W)
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
if img_matrix[t][v] is None:
|
||||
img_matrix[t][v] = anchor_frames[i, j][None]
|
||||
|
||||
# Dense sampling for the rest
|
||||
print(f"Sampling dense frames:")
|
||||
for t0 in np.arange(0, n_frames - 1, T - 1): # [0, 4, 8, 12, 16]
|
||||
frame_indices = t0 + np.arange(T)
|
||||
print(f"Sampling dense frames {frame_indices}")
|
||||
latent_matrix = torch.randn(n_frames, n_views, C, H // F, W // F).to("cuda")
|
||||
|
||||
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
|
||||
|
||||
# alternate between forward and backward conditioning
|
||||
forward_inputs, forward_frame_indices, backward_inputs, backward_frame_indices = prepare_inputs(
|
||||
frame_indices,
|
||||
img_matrix,
|
||||
v0,
|
||||
view_indices,
|
||||
model,
|
||||
version_dict,
|
||||
seed,
|
||||
polars,
|
||||
azims
|
||||
)
|
||||
|
||||
for step in range(num_steps):
|
||||
if step % 2 == 1:
|
||||
c, uc, additional_model_inputs, sampler = forward_inputs
|
||||
frame_indices = forward_frame_indices
|
||||
else:
|
||||
c, uc, additional_model_inputs, sampler = backward_inputs
|
||||
frame_indices = backward_frame_indices
|
||||
noisy_latents = latent_matrix[frame_indices][:, view_indices].flatten(0, 1)
|
||||
|
||||
samples = do_sample_per_step(
|
||||
model,
|
||||
sampler,
|
||||
noisy_latents,
|
||||
c,
|
||||
uc,
|
||||
step,
|
||||
additional_model_inputs,
|
||||
)
|
||||
samples = samples.view(T, V, C, H // F, W // F)
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
latent_matrix[t, v] = samples[i, j]
|
||||
|
||||
img_matrix = decode_latents(model, latent_matrix, img_matrix, frame_indices, view_indices, T)
|
||||
|
||||
|
||||
# concat video
|
||||
grid_list = []
|
||||
for t in range(n_frames):
|
||||
imgs_view = torch.cat(img_matrix[t])
|
||||
grid_list.append(torchvision.utils.make_grid(imgs_view, nrow=3).unsqueeze(0))
|
||||
# save output videos
|
||||
vid_file = os.path.join(output_folder, "sv4d_final.mp4")
|
||||
save_video(vid_file, grid_list)
|
||||
|
||||
return vid_file, seed
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown(
|
||||
"""# Demo for SV4D from Stability AI ([model](https://huggingface.co/stabilityai/sv4d), [news](https://stability.ai/news/stable-video-4d))
|
||||
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/sv4d/blob/main/LICENSE.md)): generate 8 novel view videos from a single-view video (with white background).
|
||||
#### It takes ~45s to generate anchor frames and another ~160s to generate full results (21 frames).
|
||||
#### Hints for improving performance:
|
||||
- Use a white background;
|
||||
- Make the object in the center of the image;
|
||||
- The SV4D process the first 21 frames of the uploaded video. Gradio provides a nice option of trimming the uploaded video if needed.
|
||||
"""
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
input_video = gr.Video(label="Upload your video")
|
||||
generate_btn = gr.Button("Step 1: generate 8 novel view videos (5 anchor frames each)")
|
||||
interpolate_btn = gr.Button("Step 2: Extend novel view videos to 21 frames")
|
||||
with gr.Column():
|
||||
anchor_video = gr.Video(label="SV4D outputs (anchor frames)")
|
||||
sv3d_video = gr.Video(label="SV3D outputs", interactive=False)
|
||||
with gr.Column():
|
||||
sv4d_interpolated_video = gr.Video(label="SV4D outputs (21 frames)")
|
||||
|
||||
with gr.Accordion("Advanced options", open=False):
|
||||
seed = gr.Slider(
|
||||
label="Seed",
|
||||
value=23,
|
||||
# randomize=True,
|
||||
minimum=0,
|
||||
maximum=100,
|
||||
step=1,
|
||||
)
|
||||
encoding_t = gr.Slider(
|
||||
label="Encode n frames at a time",
|
||||
info="Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.",
|
||||
value=8,
|
||||
minimum=1,
|
||||
maximum=40,
|
||||
)
|
||||
decoding_t = gr.Slider(
|
||||
label="Decode n frames at a time",
|
||||
info="Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.",
|
||||
value=4,
|
||||
minimum=1,
|
||||
maximum=14,
|
||||
)
|
||||
denoising_steps = gr.Slider(
|
||||
label="Number of denoising steps",
|
||||
info="Increase will improve the performance but needs more time.",
|
||||
value=20,
|
||||
minimum=10,
|
||||
maximum=50,
|
||||
step=1,
|
||||
)
|
||||
remove_bg = gr.Checkbox(
|
||||
label="Remove background",
|
||||
info="We use rembg. Users can check the alternative way: SAM2 (https://github.com/facebookresearch/segment-anything-2)",
|
||||
)
|
||||
|
||||
input_video.upload(fn=preprocess_video, inputs=[input_video, remove_bg], outputs=input_video, queue=False)
|
||||
|
||||
with gr.Row(visible=False):
|
||||
anchor_frames = gr.Video()
|
||||
|
||||
generate_btn.click(
|
||||
fn=sample_anchor,
|
||||
inputs=[input_video, seed, encoding_t, decoding_t, denoising_steps],
|
||||
outputs=[sv3d_video, anchor_video, anchor_frames],
|
||||
api_name="SV4D output (5 frames)",
|
||||
)
|
||||
|
||||
interpolate_btn.click(
|
||||
fn=sample_all,
|
||||
inputs=[input_video, sv3d_video, anchor_frames, seed, denoising_steps],
|
||||
outputs=[sv4d_interpolated_video, seed],
|
||||
api_name="SV4D interpolation (21 frames)",
|
||||
)
|
||||
|
||||
examples = gr.Examples(
|
||||
fn=preprocess_video,
|
||||
examples=[
|
||||
"./assets/sv4d_videos/test_video1.mp4",
|
||||
"./assets/sv4d_videos/test_video2.mp4",
|
||||
"./assets/sv4d_videos/green_robot.mp4",
|
||||
"./assets/sv4d_videos/dolphin.mp4",
|
||||
"./assets/sv4d_videos/lucia_v000.mp4",
|
||||
"./assets/sv4d_videos/snowboard_v000.mp4",
|
||||
"./assets/sv4d_videos/stroller_v000.mp4",
|
||||
"./assets/sv4d_videos/human5.mp4",
|
||||
"./assets/sv4d_videos/bunnyman.mp4",
|
||||
"./assets/sv4d_videos/hiphop_parrot.mp4",
|
||||
"./assets/sv4d_videos/guppie_v0.mp4",
|
||||
"./assets/sv4d_videos/wave_hello.mp4",
|
||||
"./assets/sv4d_videos/pistol_v0.mp4",
|
||||
"./assets/sv4d_videos/human7.mp4",
|
||||
"./assets/sv4d_videos/monkey.mp4",
|
||||
"./assets/sv4d_videos/train_v0.mp4",
|
||||
],
|
||||
inputs=[input_video],
|
||||
run_on_click=True,
|
||||
outputs=[input_video],
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.queue(max_size=20)
|
||||
demo.launch(share=True)
|
||||
|
||||
@@ -52,24 +52,6 @@ VERSION2SPECS = {
|
||||
"config": "configs/inference/sd_xl_base.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_base_0.9.safetensors",
|
||||
},
|
||||
"SD-2.1": {
|
||||
"H": 512,
|
||||
"W": 512,
|
||||
"C": 4,
|
||||
"f": 8,
|
||||
"is_legacy": True,
|
||||
"config": "configs/inference/sd_2_1.yaml",
|
||||
"ckpt": "checkpoints/v2-1_512-ema-pruned.safetensors",
|
||||
},
|
||||
"SD-2.1-768": {
|
||||
"H": 768,
|
||||
"W": 768,
|
||||
"C": 4,
|
||||
"f": 8,
|
||||
"is_legacy": True,
|
||||
"config": "configs/inference/sd_2_1_768.yaml",
|
||||
"ckpt": "checkpoints/v2-1_768-ema-pruned.safetensors",
|
||||
},
|
||||
"SDXL-refiner-0.9": {
|
||||
"H": 1024,
|
||||
"W": 1024,
|
||||
|
||||
1415
scripts/demo/sv4d_helpers.py
Executable file
@@ -13,15 +13,6 @@ VERSION2SPECS = {
|
||||
"config": "configs/inference/sd_xl_base.yaml",
|
||||
"ckpt": "checkpoints/sd_xl_turbo_1.0.safetensors",
|
||||
},
|
||||
"SD-Turbo": {
|
||||
"H": 512,
|
||||
"W": 512,
|
||||
"C": 4,
|
||||
"f": 8,
|
||||
"is_legacy": False,
|
||||
"config": "configs/inference/sd_2_1.yaml",
|
||||
"ckpt": "checkpoints/sd_turbo.safetensors",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
||||
203
scripts/sampling/configs/sv4d.yaml
Executable file
@@ -0,0 +1,203 @@
|
||||
N_TIME: 5
|
||||
N_VIEW: 8
|
||||
N_FRAMES: 40
|
||||
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
en_and_decode_n_samples_a_time: 7
|
||||
disable_first_stage_autocast: True
|
||||
ckpt_path: checkpoints/sv4d.safetensors
|
||||
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
||||
params:
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.video_model.SpatialUNetModelWithTime
|
||||
params:
|
||||
adm_in_channels: 1280
|
||||
attention_resolutions: [4, 2, 1]
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
context_dim: 1024
|
||||
motion_context_dim: 4
|
||||
extra_ff_mix_layer: True
|
||||
in_channels: 8
|
||||
legacy: False
|
||||
model_channels: 320
|
||||
num_classes: sequential
|
||||
num_head_channels: 64
|
||||
num_res_blocks: 2
|
||||
out_channels: 4
|
||||
replicate_time_mix_bug: True
|
||||
spatial_transformer_attn_type: softmax-xformers
|
||||
time_block_merge_factor: 0.0
|
||||
time_block_merge_strategy: learned_with_images
|
||||
time_kernel_size: [3, 1, 1]
|
||||
time_mix_legacy: False
|
||||
transformer_depth: 1
|
||||
use_checkpoint: False
|
||||
use_linear_in_transformer: True
|
||||
use_spatial_context: True
|
||||
use_spatial_transformer: True
|
||||
use_motion_attention: True
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
|
||||
- input_key: cond_frames_without_noise
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
||||
is_trainable: False
|
||||
params:
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
open_clip_embedding_config:
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
|
||||
- input_key: cond_frames
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
is_trainable: False
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_FRAMES}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
embed_dim: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
monitor: val/rec_loss
|
||||
sigma_cond_config:
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: polar_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: azimuth_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: cond_view
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_VIEW}
|
||||
n_copies: 1
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: cond_motion
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencodingEngine
|
||||
params:
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
regularizer_config:
|
||||
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
||||
encoder_config:
|
||||
target: torch.nn.Identity
|
||||
decoder_config:
|
||||
target: sgm.modules.diffusionmodules.model.Decoder
|
||||
params:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
||||
params:
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
||||
params:
|
||||
sigma_max: 500.0
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
||||
params:
|
||||
max_scale: 2.5
|
||||
num_frames: ${N_FRAMES}
|
||||
additional_cond_keys: [ cond_view, cond_motion ]
|
||||
208
scripts/sampling/configs/sv4d2.yaml
Executable file
@@ -0,0 +1,208 @@
|
||||
N_TIME: 12
|
||||
N_VIEW: 4
|
||||
N_FRAMES: 48
|
||||
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
en_and_decode_n_samples_a_time: 8
|
||||
disable_first_stage_autocast: True
|
||||
ckpt_path: checkpoints/sv4d2.safetensors
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
||||
params:
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.video_model.SpatialUNetModelWithTime
|
||||
params:
|
||||
adm_in_channels: 1280
|
||||
attention_resolutions: [4, 2, 1]
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
context_dim: 1024
|
||||
motion_context_dim: 4
|
||||
extra_ff_mix_layer: True
|
||||
in_channels: 8
|
||||
legacy: False
|
||||
model_channels: 320
|
||||
num_classes: sequential
|
||||
num_head_channels: 64
|
||||
num_res_blocks: 2
|
||||
out_channels: 4
|
||||
replicate_time_mix_bug: True
|
||||
spatial_transformer_attn_type: softmax-xformers
|
||||
time_block_merge_factor: 0.0
|
||||
time_block_merge_strategy: learned_with_images
|
||||
time_kernel_size: [3, 1, 1]
|
||||
time_mix_legacy: False
|
||||
transformer_depth: 1
|
||||
use_checkpoint: False
|
||||
use_linear_in_transformer: True
|
||||
use_spatial_context: True
|
||||
use_spatial_transformer: True
|
||||
separate_motion_merge_factor: True
|
||||
use_motion_attention: True
|
||||
use_3d_attention: True
|
||||
use_camera_emb: True
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
|
||||
- input_key: cond_frames_without_noise
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
||||
is_trainable: False
|
||||
params:
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
open_clip_embedding_config:
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
|
||||
- input_key: cond_frames
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
is_trainable: False
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_FRAMES}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
embed_dim: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
monitor: val/rec_loss
|
||||
sigma_cond_config:
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: polar_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: azimuth_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: cond_view
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_VIEW}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: cond_motion
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencodingEngine
|
||||
params:
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
regularizer_config:
|
||||
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
||||
encoder_config:
|
||||
target: torch.nn.Identity
|
||||
decoder_config:
|
||||
target: sgm.modules.diffusionmodules.model.Decoder
|
||||
params:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
||||
params:
|
||||
num_steps: 50
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
||||
params:
|
||||
sigma_max: 500.0
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.SpatiotemporalPredictionGuider
|
||||
params:
|
||||
max_scale: 1.5
|
||||
min_scale: 1.5
|
||||
num_frames: ${N_FRAMES}
|
||||
num_views: ${N_VIEW}
|
||||
additional_cond_keys: [ cond_view, cond_motion ]
|
||||
208
scripts/sampling/configs/sv4d2_8views.yaml
Executable file
@@ -0,0 +1,208 @@
|
||||
N_TIME: 5
|
||||
N_VIEW: 8
|
||||
N_FRAMES: 40
|
||||
|
||||
model:
|
||||
target: sgm.models.diffusion.DiffusionEngine
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
en_and_decode_n_samples_a_time: 8
|
||||
disable_first_stage_autocast: True
|
||||
ckpt_path: checkpoints/sv4d2_8views.safetensors
|
||||
denoiser_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
||||
params:
|
||||
scaling_config:
|
||||
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
||||
|
||||
network_config:
|
||||
target: sgm.modules.diffusionmodules.video_model.SpatialUNetModelWithTime
|
||||
params:
|
||||
adm_in_channels: 1280
|
||||
attention_resolutions: [4, 2, 1]
|
||||
channel_mult: [1, 2, 4, 4]
|
||||
context_dim: 1024
|
||||
motion_context_dim: 4
|
||||
extra_ff_mix_layer: True
|
||||
in_channels: 8
|
||||
legacy: False
|
||||
model_channels: 320
|
||||
num_classes: sequential
|
||||
num_head_channels: 64
|
||||
num_res_blocks: 2
|
||||
out_channels: 4
|
||||
replicate_time_mix_bug: True
|
||||
spatial_transformer_attn_type: softmax-xformers
|
||||
time_block_merge_factor: 0.0
|
||||
time_block_merge_strategy: learned_with_images
|
||||
time_kernel_size: [3, 1, 1]
|
||||
time_mix_legacy: False
|
||||
transformer_depth: 1
|
||||
use_checkpoint: False
|
||||
use_linear_in_transformer: True
|
||||
use_spatial_context: True
|
||||
use_spatial_transformer: True
|
||||
separate_motion_merge_factor: True
|
||||
use_motion_attention: True
|
||||
use_3d_attention: False
|
||||
use_camera_emb: True
|
||||
|
||||
conditioner_config:
|
||||
target: sgm.modules.GeneralConditioner
|
||||
params:
|
||||
emb_models:
|
||||
|
||||
- input_key: cond_frames_without_noise
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
||||
is_trainable: False
|
||||
params:
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
open_clip_embedding_config:
|
||||
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
||||
params:
|
||||
freeze: True
|
||||
|
||||
- input_key: cond_frames
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
is_trainable: False
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_FRAMES}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
embed_dim: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
monitor: val/rec_loss
|
||||
sigma_cond_config:
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 256
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: polar_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: azimuth_rad
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
||||
params:
|
||||
outdim: 512
|
||||
|
||||
- input_key: cond_view
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_VIEW}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
- input_key: cond_motion
|
||||
is_trainable: False
|
||||
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
||||
params:
|
||||
is_ae: True
|
||||
n_cond_frames: ${N_TIME}
|
||||
n_copies: 1
|
||||
encoder_config:
|
||||
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
sigma_sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sigma_sampling.ZeroSampler
|
||||
|
||||
first_stage_config:
|
||||
target: sgm.models.autoencoder.AutoencodingEngine
|
||||
params:
|
||||
loss_config:
|
||||
target: torch.nn.Identity
|
||||
regularizer_config:
|
||||
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
||||
encoder_config:
|
||||
target: torch.nn.Identity
|
||||
decoder_config:
|
||||
target: sgm.modules.diffusionmodules.model.Decoder
|
||||
params:
|
||||
attn_resolutions: []
|
||||
attn_type: vanilla-xformers
|
||||
ch: 128
|
||||
ch_mult: [1, 2, 4, 4]
|
||||
double_z: True
|
||||
dropout: 0.0
|
||||
in_channels: 3
|
||||
num_res_blocks: 2
|
||||
out_ch: 3
|
||||
resolution: 256
|
||||
z_channels: 4
|
||||
|
||||
sampler_config:
|
||||
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
||||
params:
|
||||
num_steps: 50
|
||||
discretization_config:
|
||||
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
||||
params:
|
||||
sigma_max: 500.0
|
||||
guider_config:
|
||||
target: sgm.modules.diffusionmodules.guiders.SpatiotemporalPredictionGuider
|
||||
params:
|
||||
max_scale: 2.0
|
||||
min_scale: 1.5
|
||||
num_frames: ${N_FRAMES}
|
||||
num_views: ${N_VIEW}
|
||||
additional_cond_keys: [ cond_view, cond_motion ]
|
||||
@@ -163,7 +163,7 @@ def sample(
|
||||
else:
|
||||
with Image.open(input_img_path) as image:
|
||||
if image.mode == "RGBA":
|
||||
input_image = image.convert("RGB")
|
||||
image = image.convert("RGB")
|
||||
w, h = image.size
|
||||
|
||||
if h % 64 != 0 or w % 64 != 0:
|
||||
@@ -172,7 +172,8 @@ def sample(
|
||||
print(
|
||||
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
||||
)
|
||||
|
||||
input_image = np.array(image)
|
||||
|
||||
image = ToTensor()(input_image)
|
||||
image = image * 2.0 - 1.0
|
||||
|
||||
|
||||
259
scripts/sampling/simple_video_sample_4d.py
Executable file
@@ -0,0 +1,259 @@
|
||||
import os
|
||||
import sys
|
||||
from glob import glob
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../")))
|
||||
import numpy as np
|
||||
import torch
|
||||
from fire import Fire
|
||||
|
||||
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
|
||||
from scripts.demo.sv4d_helpers import (
|
||||
decode_latents,
|
||||
load_model,
|
||||
initial_model_load,
|
||||
read_video,
|
||||
run_img2vid,
|
||||
prepare_sampling,
|
||||
prepare_inputs,
|
||||
do_sample_per_step,
|
||||
sample_sv3d,
|
||||
save_video,
|
||||
preprocess_video,
|
||||
)
|
||||
|
||||
|
||||
def sample(
|
||||
input_path: str = "assets/sv4d_videos/test_video1.mp4", # Can either be image file or folder with image files
|
||||
output_folder: Optional[str] = "outputs/sv4d",
|
||||
num_steps: Optional[int] = 20,
|
||||
sv3d_version: str = "sv3d_u", # sv3d_u or sv3d_p
|
||||
img_size: int = 576, # image resolution
|
||||
fps_id: int = 6,
|
||||
motion_bucket_id: int = 127,
|
||||
cond_aug: float = 1e-5,
|
||||
seed: int = 23,
|
||||
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
device: str = "cuda",
|
||||
elevations_deg: Optional[Union[float, List[float]]] = 10.0,
|
||||
azimuths_deg: Optional[List[float]] = None,
|
||||
image_frame_ratio: Optional[float] = 0.917,
|
||||
verbose: Optional[bool] = False,
|
||||
remove_bg: bool = False,
|
||||
):
|
||||
"""
|
||||
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t` and `encoding_t`.
|
||||
"""
|
||||
# Set model config
|
||||
T = 5 # number of frames per sample
|
||||
V = 8 # number of views per sample
|
||||
F = 8 # vae factor to downsize image->latent
|
||||
C = 4
|
||||
H, W = img_size, img_size
|
||||
n_frames = 21 # number of input and output video frames
|
||||
n_views = V + 1 # number of output video views (1 input view + 8 novel views)
|
||||
n_views_sv3d = 21
|
||||
subsampled_views = np.array(
|
||||
[0, 2, 5, 7, 9, 12, 14, 16, 19]
|
||||
) # subsample (V+1=)9 (uniform) views from 21 SV3D views
|
||||
|
||||
model_config = "scripts/sampling/configs/sv4d.yaml"
|
||||
version_dict = {
|
||||
"T": T * V,
|
||||
"H": H,
|
||||
"W": W,
|
||||
"C": C,
|
||||
"f": F,
|
||||
"options": {
|
||||
"discretization": 1,
|
||||
"cfg": 2.0,
|
||||
"num_views": V,
|
||||
"sigma_min": 0.002,
|
||||
"sigma_max": 700.0,
|
||||
"rho": 7.0,
|
||||
"guider": 5,
|
||||
"num_steps": num_steps,
|
||||
"force_uc_zero_embeddings": [
|
||||
"cond_frames",
|
||||
"cond_frames_without_noise",
|
||||
"cond_view",
|
||||
"cond_motion",
|
||||
],
|
||||
"additional_guider_kwargs": {
|
||||
"additional_cond_keys": ["cond_view", "cond_motion"]
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
torch.manual_seed(seed)
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
# Read input video frames i.e. images at view 0
|
||||
print(f"Reading {input_path}")
|
||||
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // 11
|
||||
processed_input_path = preprocess_video(
|
||||
input_path,
|
||||
remove_bg=remove_bg,
|
||||
n_frames=n_frames,
|
||||
W=W,
|
||||
H=H,
|
||||
output_folder=output_folder,
|
||||
image_frame_ratio=image_frame_ratio,
|
||||
base_count=base_count,
|
||||
)
|
||||
images_v0 = read_video(processed_input_path, n_frames=n_frames, device=device)
|
||||
|
||||
# Get camera viewpoints
|
||||
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
|
||||
elevations_deg = [elevations_deg] * n_views_sv3d
|
||||
assert (
|
||||
len(elevations_deg) == n_views_sv3d
|
||||
), f"Please provide 1 value, or a list of {n_views_sv3d} values for elevations_deg! Given {len(elevations_deg)}"
|
||||
if azimuths_deg is None:
|
||||
azimuths_deg = np.linspace(0, 360, n_views_sv3d + 1)[1:] % 360
|
||||
assert (
|
||||
len(azimuths_deg) == n_views_sv3d
|
||||
), f"Please provide a list of {n_views_sv3d} values for azimuths_deg! Given {len(azimuths_deg)}"
|
||||
polars_rad = np.array([np.deg2rad(90 - e) for e in elevations_deg])
|
||||
azimuths_rad = np.array(
|
||||
[np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
|
||||
)
|
||||
|
||||
# Sample multi-view images of the first frame using SV3D i.e. images at time 0
|
||||
images_t0 = sample_sv3d(
|
||||
images_v0[0],
|
||||
n_views_sv3d,
|
||||
num_steps,
|
||||
sv3d_version,
|
||||
fps_id,
|
||||
motion_bucket_id,
|
||||
cond_aug,
|
||||
decoding_t,
|
||||
device,
|
||||
polars_rad,
|
||||
azimuths_rad,
|
||||
verbose,
|
||||
)
|
||||
images_t0 = torch.roll(images_t0, 1, 0) # move conditioning image to first frame
|
||||
|
||||
# Initialize image matrix
|
||||
img_matrix = [[None] * n_views for _ in range(n_frames)]
|
||||
for i, v in enumerate(subsampled_views):
|
||||
img_matrix[0][i] = images_t0[v].unsqueeze(0)
|
||||
for t in range(n_frames):
|
||||
img_matrix[t][0] = images_v0[t]
|
||||
|
||||
save_video(
|
||||
os.path.join(output_folder, f"{base_count:06d}_t000.mp4"),
|
||||
img_matrix[0],
|
||||
)
|
||||
# save_video(
|
||||
# os.path.join(output_folder, f"{base_count:06d}_v000.mp4"),
|
||||
# [img_matrix[t][0] for t in range(n_frames)],
|
||||
# )
|
||||
|
||||
# Load SV4D model
|
||||
model, filter = load_model(
|
||||
model_config,
|
||||
device,
|
||||
version_dict["T"],
|
||||
num_steps,
|
||||
verbose,
|
||||
)
|
||||
model = initial_model_load(model)
|
||||
for emb in model.conditioner.embedders:
|
||||
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
|
||||
emb.en_and_decode_n_samples_a_time = encoding_t
|
||||
model.en_and_decode_n_samples_a_time = decoding_t
|
||||
|
||||
# Interleaved sampling for anchor frames
|
||||
t0, v0 = 0, 0
|
||||
frame_indices = np.arange(T - 1, n_frames, T - 1) # [4, 8, 12, 16, 20]
|
||||
view_indices = np.arange(V) + 1
|
||||
print(f"Sampling anchor frames {frame_indices}")
|
||||
image = img_matrix[t0][v0]
|
||||
cond_motion = torch.cat([img_matrix[t][v0] for t in frame_indices], 0)
|
||||
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
|
||||
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
|
||||
samples = run_img2vid(
|
||||
version_dict, model, image, seed, polars, azims, cond_motion, cond_view, decoding_t
|
||||
)
|
||||
samples = samples.view(T, V, 3, H, W)
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
if img_matrix[t][v] is None:
|
||||
img_matrix[t][v] = samples[i, j][None] * 2 - 1
|
||||
|
||||
# Dense sampling for the rest
|
||||
print(f"Sampling dense frames:")
|
||||
for t0 in tqdm(np.arange(0, n_frames - 1, T - 1)): # [0, 4, 8, 12, 16]
|
||||
frame_indices = t0 + np.arange(T)
|
||||
print(f"Sampling dense frames {frame_indices}")
|
||||
latent_matrix = torch.randn(n_frames, n_views, C, H // F, W // F).to("cuda")
|
||||
|
||||
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
|
||||
|
||||
# alternate between forward and backward conditioning
|
||||
forward_inputs, forward_frame_indices, backward_inputs, backward_frame_indices = prepare_inputs(
|
||||
frame_indices,
|
||||
img_matrix,
|
||||
v0,
|
||||
view_indices,
|
||||
model,
|
||||
version_dict,
|
||||
seed,
|
||||
polars,
|
||||
azims
|
||||
)
|
||||
|
||||
for step in tqdm(range(num_steps)):
|
||||
if step % 2 == 1:
|
||||
c, uc, additional_model_inputs, sampler = forward_inputs
|
||||
frame_indices = forward_frame_indices
|
||||
else:
|
||||
c, uc, additional_model_inputs, sampler = backward_inputs
|
||||
frame_indices = backward_frame_indices
|
||||
noisy_latents = latent_matrix[frame_indices][:, view_indices].flatten(0, 1)
|
||||
|
||||
samples = do_sample_per_step(
|
||||
model,
|
||||
sampler,
|
||||
noisy_latents,
|
||||
c,
|
||||
uc,
|
||||
step,
|
||||
additional_model_inputs,
|
||||
)
|
||||
samples = samples.view(T, V, C, H // F, W // F)
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
latent_matrix[t, v] = samples[i, j]
|
||||
|
||||
img_matrix = decode_latents(model, latent_matrix, img_matrix, frame_indices, view_indices, T)
|
||||
|
||||
# Save output videos
|
||||
for v in view_indices:
|
||||
vid_file = os.path.join(output_folder, f"{base_count:06d}_v{v:03d}.mp4")
|
||||
print(f"Saving {vid_file}")
|
||||
save_video(vid_file, [img_matrix[t][v] for t in range(n_frames)])
|
||||
|
||||
# Save diagonal video
|
||||
diag_frames = [
|
||||
img_matrix[t][(t // (n_frames // n_views)) % n_views] for t in range(n_frames)
|
||||
]
|
||||
vid_file = os.path.join(output_folder, f"{base_count:06d}_diag.mp4")
|
||||
print(f"Saving {vid_file}")
|
||||
save_video(vid_file, diag_frames)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Fire(sample)
|
||||
235
scripts/sampling/simple_video_sample_4d2.py
Executable file
@@ -0,0 +1,235 @@
|
||||
import os
|
||||
import sys
|
||||
from glob import glob
|
||||
from typing import List, Optional
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../")))
|
||||
import numpy as np
|
||||
import torch
|
||||
from fire import Fire
|
||||
from scripts.demo.sv4d_helpers import (
|
||||
load_model,
|
||||
preprocess_video,
|
||||
read_video,
|
||||
run_img2vid,
|
||||
save_video,
|
||||
)
|
||||
from sgm.modules.encoders.modules import VideoPredictionEmbedderWithEncoder
|
||||
|
||||
sv4d2_configs = {
|
||||
"sv4d2": {
|
||||
"T": 12, # number of frames per sample
|
||||
"V": 4, # number of views per sample
|
||||
"model_config": "scripts/sampling/configs/sv4d2.yaml",
|
||||
"version_dict": {
|
||||
"T": 12 * 4,
|
||||
"options": {
|
||||
"discretization": 1,
|
||||
"cfg": 2.0,
|
||||
"min_cfg": 2.0,
|
||||
"num_views": 4,
|
||||
"sigma_min": 0.002,
|
||||
"sigma_max": 700.0,
|
||||
"rho": 7.0,
|
||||
"guider": 2,
|
||||
"force_uc_zero_embeddings": [
|
||||
"cond_frames",
|
||||
"cond_frames_without_noise",
|
||||
"cond_view",
|
||||
"cond_motion",
|
||||
],
|
||||
"additional_guider_kwargs": {
|
||||
"additional_cond_keys": ["cond_view", "cond_motion"]
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
"sv4d2_8views": {
|
||||
"T": 5, # number of frames per sample
|
||||
"V": 8, # number of views per sample
|
||||
"model_config": "scripts/sampling/configs/sv4d2_8views.yaml",
|
||||
"version_dict": {
|
||||
"T": 5 * 8,
|
||||
"options": {
|
||||
"discretization": 1,
|
||||
"cfg": 2.5,
|
||||
"min_cfg": 1.5,
|
||||
"num_views": 8,
|
||||
"sigma_min": 0.002,
|
||||
"sigma_max": 700.0,
|
||||
"rho": 7.0,
|
||||
"guider": 5,
|
||||
"force_uc_zero_embeddings": [
|
||||
"cond_frames",
|
||||
"cond_frames_without_noise",
|
||||
"cond_view",
|
||||
"cond_motion",
|
||||
],
|
||||
"additional_guider_kwargs": {
|
||||
"additional_cond_keys": ["cond_view", "cond_motion"]
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def sample(
|
||||
input_path: str = "assets/sv4d_videos/camel.gif", # Can either be image file or folder with image files
|
||||
model_path: Optional[str] = "checkpoints/sv4d2.safetensors",
|
||||
output_folder: Optional[str] = "outputs",
|
||||
num_steps: Optional[int] = 50,
|
||||
img_size: int = 576, # image resolution
|
||||
n_frames: int = 21, # number of input and output video frames
|
||||
seed: int = 23,
|
||||
encoding_t: int = 8, # Number of frames encoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
device: str = "cuda",
|
||||
elevations_deg: Optional[List[float]] = 0.0,
|
||||
azimuths_deg: Optional[List[float]] = None,
|
||||
image_frame_ratio: Optional[float] = 0.9,
|
||||
verbose: Optional[bool] = False,
|
||||
remove_bg: bool = False,
|
||||
):
|
||||
"""
|
||||
Simple script to generate multiple novel-view videos conditioned on a video `input_path` or multiple frames, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t` and `encoding_t`.
|
||||
"""
|
||||
# Set model config
|
||||
assert os.path.basename(model_path) in [
|
||||
"sv4d2.safetensors",
|
||||
"sv4d2_8views.safetensors",
|
||||
]
|
||||
sv4d2_model = os.path.splitext(os.path.basename(model_path))[0]
|
||||
config = sv4d2_configs[sv4d2_model]
|
||||
print(sv4d2_model, config)
|
||||
T = config["T"]
|
||||
V = config["V"]
|
||||
model_config = config["model_config"]
|
||||
version_dict = config["version_dict"]
|
||||
F = 8 # vae factor to downsize image->latent
|
||||
C = 4
|
||||
H, W = img_size, img_size
|
||||
n_views = V + 1 # number of output video views (1 input view + 8 novel views)
|
||||
subsampled_views = np.arange(n_views)
|
||||
version_dict["H"] = H
|
||||
version_dict["W"] = W
|
||||
version_dict["C"] = C
|
||||
version_dict["f"] = F
|
||||
version_dict["options"]["num_steps"] = num_steps
|
||||
|
||||
torch.manual_seed(seed)
|
||||
output_folder = os.path.join(output_folder, sv4d2_model)
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
|
||||
# Read input video frames i.e. images at view 0
|
||||
print(f"Reading {input_path}")
|
||||
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) // n_views
|
||||
processed_input_path = preprocess_video(
|
||||
input_path,
|
||||
remove_bg=remove_bg,
|
||||
n_frames=n_frames,
|
||||
W=W,
|
||||
H=H,
|
||||
output_folder=output_folder,
|
||||
image_frame_ratio=image_frame_ratio,
|
||||
base_count=base_count,
|
||||
)
|
||||
images_v0 = read_video(processed_input_path, n_frames=n_frames, device=device)
|
||||
images_t0 = torch.zeros(n_views, 3, H, W).float().to(device)
|
||||
|
||||
# Get camera viewpoints
|
||||
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
|
||||
elevations_deg = [elevations_deg] * n_views
|
||||
assert (
|
||||
len(elevations_deg) == n_views
|
||||
), f"Please provide 1 value, or a list of {n_views} values for elevations_deg! Given {len(elevations_deg)}"
|
||||
if azimuths_deg is None:
|
||||
# azimuths_deg = np.linspace(0, 360, n_views + 1)[1:] % 360
|
||||
azimuths_deg = (
|
||||
np.array([0, 60, 120, 180, 240])
|
||||
if sv4d2_model == "sv4d2"
|
||||
else np.array([0, 30, 75, 120, 165, 210, 255, 300, 330])
|
||||
)
|
||||
assert (
|
||||
len(azimuths_deg) == n_views
|
||||
), f"Please provide a list of {n_views} values for azimuths_deg! Given {len(azimuths_deg)}"
|
||||
polars_rad = np.array([np.deg2rad(90 - e) for e in elevations_deg])
|
||||
azimuths_rad = np.array(
|
||||
[np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
|
||||
)
|
||||
|
||||
# Initialize image matrix
|
||||
img_matrix = [[None] * n_views for _ in range(n_frames)]
|
||||
for i, v in enumerate(subsampled_views):
|
||||
img_matrix[0][i] = images_t0[v].unsqueeze(0)
|
||||
for t in range(n_frames):
|
||||
img_matrix[t][0] = images_v0[t]
|
||||
|
||||
# Load SV4D++ model
|
||||
model, _ = load_model(
|
||||
model_config,
|
||||
device,
|
||||
version_dict["T"],
|
||||
num_steps,
|
||||
verbose,
|
||||
model_path,
|
||||
)
|
||||
model.en_and_decode_n_samples_a_time = decoding_t
|
||||
for emb in model.conditioner.embedders:
|
||||
if isinstance(emb, VideoPredictionEmbedderWithEncoder):
|
||||
emb.en_and_decode_n_samples_a_time = encoding_t
|
||||
|
||||
# Sampling novel-view videos
|
||||
v0 = 0
|
||||
view_indices = np.arange(V) + 1
|
||||
t0_list = (
|
||||
range(0, n_frames, T-1)
|
||||
if sv4d2_model == "sv4d2"
|
||||
else range(0, n_frames - T + 1, T - 1)
|
||||
)
|
||||
for t0 in tqdm(t0_list):
|
||||
if t0 + T > n_frames:
|
||||
t0 = n_frames - T
|
||||
frame_indices = t0 + np.arange(T)
|
||||
print(f"Sampling frames {frame_indices}")
|
||||
image = img_matrix[t0][v0]
|
||||
cond_motion = torch.cat([img_matrix[t][v0] for t in frame_indices], 0)
|
||||
cond_view = torch.cat([img_matrix[t0][v] for v in view_indices], 0)
|
||||
polars = polars_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
azims = azimuths_rad[subsampled_views[1:]][None].repeat(T, 0).flatten()
|
||||
polars = (polars - polars_rad[v0] + torch.pi / 2) % (torch.pi * 2)
|
||||
azims = (azims - azimuths_rad[v0]) % (torch.pi * 2)
|
||||
cond_mv = False if t0 == 0 else True
|
||||
samples = run_img2vid(
|
||||
version_dict,
|
||||
model,
|
||||
image,
|
||||
seed,
|
||||
polars,
|
||||
azims,
|
||||
cond_motion,
|
||||
cond_view,
|
||||
decoding_t,
|
||||
cond_mv=cond_mv,
|
||||
)
|
||||
samples = samples.view(T, V, 3, H, W)
|
||||
|
||||
for i, t in enumerate(frame_indices):
|
||||
for j, v in enumerate(view_indices):
|
||||
img_matrix[t][v] = samples[i, j][None] * 2 - 1
|
||||
|
||||
# Save output videos
|
||||
for v in view_indices:
|
||||
vid_file = os.path.join(output_folder, f"{base_count:06d}_v{v:03d}.mp4")
|
||||
print(f"Saving {vid_file}")
|
||||
save_video(
|
||||
vid_file,
|
||||
[img_matrix[t][v] for t in range(n_frames) if img_matrix[t][v] is not None],
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Fire(sample)
|
||||
@@ -17,8 +17,6 @@ from sgm.util import load_model_from_config
|
||||
|
||||
|
||||
class ModelArchitecture(str, Enum):
|
||||
SD_2_1 = "stable-diffusion-v2-1"
|
||||
SD_2_1_768 = "stable-diffusion-v2-1-768"
|
||||
SDXL_V0_9_BASE = "stable-diffusion-xl-v0-9-base"
|
||||
SDXL_V0_9_REFINER = "stable-diffusion-xl-v0-9-refiner"
|
||||
SDXL_V1_BASE = "stable-diffusion-xl-v1-base"
|
||||
@@ -89,26 +87,6 @@ class SamplingSpec:
|
||||
|
||||
|
||||
model_specs = {
|
||||
ModelArchitecture.SD_2_1: SamplingSpec(
|
||||
height=512,
|
||||
width=512,
|
||||
channels=4,
|
||||
factor=8,
|
||||
is_legacy=True,
|
||||
config="sd_2_1.yaml",
|
||||
ckpt="v2-1_512-ema-pruned.safetensors",
|
||||
is_guided=True,
|
||||
),
|
||||
ModelArchitecture.SD_2_1_768: SamplingSpec(
|
||||
height=768,
|
||||
width=768,
|
||||
channels=4,
|
||||
factor=8,
|
||||
is_legacy=True,
|
||||
config="sd_2_1_768.yaml",
|
||||
ckpt="v2-1_768-ema-pruned.safetensors",
|
||||
is_guided=True,
|
||||
),
|
||||
ModelArchitecture.SDXL_V0_9_BASE: SamplingSpec(
|
||||
height=1024,
|
||||
width=1024,
|
||||
|
||||
@@ -94,7 +94,7 @@ class LinearPredictionGuider(Guider):
|
||||
if k in ["vector", "crossattn", "concat"] + self.additional_cond_keys:
|
||||
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
||||
else:
|
||||
assert c[k] == uc[k]
|
||||
# assert c[k] == uc[k]
|
||||
c_out[k] = c[k]
|
||||
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
||||
|
||||
@@ -105,7 +105,7 @@ class TrianglePredictionGuider(LinearPredictionGuider):
|
||||
max_scale: float,
|
||||
num_frames: int,
|
||||
min_scale: float = 1.0,
|
||||
period: float | List[float] = 1.0,
|
||||
period: Union[float, List[float]] = 1.0,
|
||||
period_fusing: Literal["mean", "multiply", "max"] = "max",
|
||||
additional_cond_keys: Optional[Union[List[str], str]] = None,
|
||||
):
|
||||
@@ -129,3 +129,47 @@ class TrianglePredictionGuider(LinearPredictionGuider):
|
||||
|
||||
def triangle_wave(self, values: torch.Tensor, period) -> torch.Tensor:
|
||||
return 2 * (values / period - torch.floor(values / period + 0.5)).abs()
|
||||
|
||||
|
||||
class TrapezoidPredictionGuider(LinearPredictionGuider):
|
||||
def __init__(
|
||||
self,
|
||||
max_scale: float,
|
||||
num_frames: int,
|
||||
min_scale: float = 1.0,
|
||||
edge_perc: float = 0.1,
|
||||
additional_cond_keys: Optional[Union[List[str], str]] = None,
|
||||
):
|
||||
super().__init__(max_scale, num_frames, min_scale, additional_cond_keys)
|
||||
|
||||
rise_steps = torch.linspace(min_scale, max_scale, int(num_frames * edge_perc))
|
||||
fall_steps = torch.flip(rise_steps, [0])
|
||||
self.scale = torch.cat(
|
||||
[
|
||||
rise_steps,
|
||||
torch.ones(num_frames - 2 * int(num_frames * edge_perc)),
|
||||
fall_steps,
|
||||
]
|
||||
).unsqueeze(0)
|
||||
|
||||
|
||||
class SpatiotemporalPredictionGuider(LinearPredictionGuider):
|
||||
def __init__(
|
||||
self,
|
||||
max_scale: float,
|
||||
num_frames: int,
|
||||
num_views: int = 1,
|
||||
min_scale: float = 1.0,
|
||||
additional_cond_keys: Optional[Union[List[str], str]] = None,
|
||||
):
|
||||
super().__init__(max_scale, num_frames, min_scale, additional_cond_keys)
|
||||
V = num_views
|
||||
T = num_frames // V
|
||||
scale = torch.zeros(num_frames).view(T, V)
|
||||
scale += torch.linspace(0, 1, T)[:,None] * 0.5
|
||||
scale += self.triangle_wave(torch.linspace(0, 1, V))[None,:] * 0.5
|
||||
scale = scale.flatten()
|
||||
self.scale = (scale * (max_scale - min_scale) + min_scale).unsqueeze(0)
|
||||
|
||||
def triangle_wave(self, values: torch.Tensor, period=1) -> torch.Tensor:
|
||||
return 2 * (values / period - torch.floor(values / period + 0.5)).abs()
|
||||
@@ -74,21 +74,62 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
context: Optional[th.Tensor] = None,
|
||||
cam: Optional[th.Tensor] = None,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
cond_view: Optional[th.Tensor] = None,
|
||||
cond_motion: Optional[th.Tensor] = None,
|
||||
time_context: Optional[int] = None,
|
||||
num_video_frames: Optional[int] = None,
|
||||
time_step: Optional[int] = None,
|
||||
name: Optional[str] = None,
|
||||
):
|
||||
from ...modules.diffusionmodules.video_model import VideoResBlock
|
||||
from ...modules.diffusionmodules.video_model import VideoResBlock, PostHocResBlockWithTime
|
||||
from ...modules.spacetime_attention import (
|
||||
BasicTransformerTimeMixBlock,
|
||||
PostHocSpatialTransformerWithTimeMixing,
|
||||
PostHocSpatialTransformerWithTimeMixingAndMotion,
|
||||
)
|
||||
|
||||
for layer in self:
|
||||
module = layer
|
||||
|
||||
if isinstance(module, TimestepBlock) and not isinstance(
|
||||
module, VideoResBlock
|
||||
if isinstance(
|
||||
module,
|
||||
(
|
||||
BasicTransformerTimeMixBlock,
|
||||
PostHocSpatialTransformerWithTimeMixing,
|
||||
),
|
||||
):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(module, VideoResBlock):
|
||||
x = layer(x, emb, num_video_frames, image_only_indicator)
|
||||
x = layer(
|
||||
x,
|
||||
context,
|
||||
emb,
|
||||
time_context,
|
||||
num_video_frames,
|
||||
image_only_indicator,
|
||||
cond_view,
|
||||
cond_motion,
|
||||
time_step,
|
||||
name,
|
||||
)
|
||||
elif isinstance(
|
||||
module,
|
||||
(
|
||||
PostHocSpatialTransformerWithTimeMixingAndMotion,
|
||||
),
|
||||
):
|
||||
x = layer(
|
||||
x,
|
||||
context,
|
||||
emb,
|
||||
time_context,
|
||||
num_video_frames,
|
||||
image_only_indicator,
|
||||
cond_view,
|
||||
cond_motion,
|
||||
time_step,
|
||||
name,
|
||||
)
|
||||
elif isinstance(module, SpatialVideoTransformer):
|
||||
x = layer(
|
||||
x,
|
||||
@@ -96,7 +137,16 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
time_context,
|
||||
num_video_frames,
|
||||
image_only_indicator,
|
||||
# time_step,
|
||||
)
|
||||
elif isinstance(module, PostHocResBlockWithTime):
|
||||
x = layer(x, emb, num_video_frames, image_only_indicator)
|
||||
elif isinstance(module, VideoResBlock):
|
||||
x = layer(x, emb, num_video_frames, image_only_indicator)
|
||||
elif isinstance(module, TimestepBlock) and not isinstance(
|
||||
module, VideoResBlock
|
||||
):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(module, SpatialTransformer):
|
||||
x = layer(x, context)
|
||||
else:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import torch
|
||||
|
||||
from typing import Optional, Union
|
||||
from ...util import default, instantiate_from_config
|
||||
|
||||
|
||||
@@ -29,3 +29,10 @@ class DiscreteSampling:
|
||||
torch.randint(0, self.num_idx, (n_samples,)),
|
||||
)
|
||||
return self.idx_to_sigma(idx)
|
||||
|
||||
|
||||
class ZeroSampler:
|
||||
def __call__(
|
||||
self, n_samples: int, rand: Optional[torch.Tensor] = None
|
||||
) -> torch.Tensor:
|
||||
return torch.zeros_like(default(rand, torch.randn((n_samples,)))) + 1.0e-5
|
||||
|
||||
@@ -17,6 +17,36 @@ import torch.nn as nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
def get_alpha(
|
||||
merge_strategy: str,
|
||||
mix_factor: Optional[torch.Tensor],
|
||||
image_only_indicator: torch.Tensor,
|
||||
apply_sigmoid: bool = True,
|
||||
is_attn: bool = False,
|
||||
) -> torch.Tensor:
|
||||
if merge_strategy == "fixed" or merge_strategy == "learned":
|
||||
alpha = mix_factor
|
||||
elif merge_strategy == "learned_with_images":
|
||||
alpha = torch.where(
|
||||
image_only_indicator.bool(),
|
||||
torch.ones(1, 1, device=image_only_indicator.device),
|
||||
rearrange(mix_factor, "... -> ... 1"),
|
||||
)
|
||||
if is_attn:
|
||||
alpha = rearrange(alpha, "b t -> (b t) 1 1")
|
||||
else:
|
||||
alpha = rearrange(alpha, "b t -> b 1 t 1 1")
|
||||
elif merge_strategy == "fixed_with_images":
|
||||
alpha = image_only_indicator
|
||||
if is_attn:
|
||||
alpha = rearrange(alpha, "b t -> (b t) 1 1")
|
||||
else:
|
||||
alpha = rearrange(alpha, "b t -> b 1 t 1 1")
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return torch.sigmoid(alpha) if apply_sigmoid else alpha
|
||||
|
||||
|
||||
def make_beta_schedule(
|
||||
schedule,
|
||||
n_timestep,
|
||||
|
||||
@@ -5,8 +5,13 @@ from einops import rearrange
|
||||
|
||||
from ...modules.diffusionmodules.openaimodel import *
|
||||
from ...modules.video_attention import SpatialVideoTransformer
|
||||
from ...modules.spacetime_attention import (
|
||||
BasicTransformerTimeMixBlock,
|
||||
PostHocSpatialTransformerWithTimeMixing,
|
||||
PostHocSpatialTransformerWithTimeMixingAndMotion,
|
||||
)
|
||||
from ...util import default
|
||||
from .util import AlphaBlender
|
||||
from .util import AlphaBlender, get_alpha
|
||||
|
||||
|
||||
class VideoResBlock(ResBlock):
|
||||
@@ -491,3 +496,759 @@ class VideoUNet(nn.Module):
|
||||
)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
||||
class PostHocAttentionBlockWithTimeMixing(AttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
n_heads: int,
|
||||
d_head: int,
|
||||
use_checkpoint: bool = False,
|
||||
use_new_attention_order: bool = False,
|
||||
dropout: float = 0.0,
|
||||
use_spatial_context: bool = False,
|
||||
merge_strategy: bool = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
apply_sigmoid_to_merge: bool = True,
|
||||
ff_in: bool = False,
|
||||
attn_mode: str = "softmax",
|
||||
disable_temporal_crossattention: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
inner_dim = n_heads * d_head
|
||||
|
||||
self.time_mix_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerTimeMixBlock(
|
||||
inner_dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=dropout,
|
||||
checkpoint=use_checkpoint,
|
||||
ff_in=ff_in,
|
||||
attn_mode=attn_mode,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
)
|
||||
]
|
||||
)
|
||||
self.in_channels = in_channels
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.time_mix_time_embed = nn.Sequential(
|
||||
linear(self.in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
|
||||
self.use_spatial_context = use_spatial_context
|
||||
|
||||
if merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", th.Tensor([merge_factor]))
|
||||
elif merge_strategy == "learned" or merge_strategy == "learned_with_images":
|
||||
self.register_parameter(
|
||||
"mix_factor", th.nn.Parameter(th.Tensor([merge_factor]))
|
||||
)
|
||||
elif merge_strategy == "fixed_with_images":
|
||||
self.mix_factor = None
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {merge_strategy}")
|
||||
|
||||
self.get_alpha_fn = functools.partial(
|
||||
get_alpha,
|
||||
merge_strategy,
|
||||
self.mix_factor,
|
||||
apply_sigmoid=apply_sigmoid_to_merge,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
context: Optional[th.Tensor] = None,
|
||||
# cam: Optional[th.Tensor] = None,
|
||||
time_context: Optional[th.Tensor] = None,
|
||||
timesteps: Optional[int] = None,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
conv_view: Optional[th.Tensor] = None,
|
||||
conv_motion: Optional[th.Tensor] = None,
|
||||
):
|
||||
if time_context is not None:
|
||||
raise NotImplementedError
|
||||
|
||||
_, _, h, w = x.shape
|
||||
if exists(context):
|
||||
context = rearrange(context, "b t ... -> (b t) ...")
|
||||
if self.use_spatial_context:
|
||||
time_context = repeat(context[:, 0], "b ... -> (b n) ...", n=h * w)
|
||||
|
||||
x = super().forward(
|
||||
x,
|
||||
)
|
||||
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
x_mix = x
|
||||
|
||||
num_frames = th.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
||||
emb = self.time_mix_time_embed(t_emb)
|
||||
emb = emb[:, None, :]
|
||||
x_mix = x_mix + emb
|
||||
|
||||
x_mix = self.time_mix_blocks[0](
|
||||
x_mix, context=time_context, timesteps=timesteps
|
||||
)
|
||||
|
||||
alpha = self.get_alpha_fn(image_only_indicator=image_only_indicator)
|
||||
x = alpha * x + (1.0 - alpha) * x_mix
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
return x
|
||||
|
||||
|
||||
class PostHocResBlockWithTime(ResBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
emb_channels: int,
|
||||
dropout: float,
|
||||
time_kernel_size: Union[int, List[int]] = 3,
|
||||
merge_strategy: bool = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
apply_sigmoid_to_merge: bool = True,
|
||||
out_channels: Optional[int] = None,
|
||||
use_conv: bool = False,
|
||||
use_scale_shift_norm: bool = False,
|
||||
dims: int = 2,
|
||||
use_checkpoint: bool = False,
|
||||
up: bool = False,
|
||||
down: bool = False,
|
||||
time_mix_legacy: bool = True,
|
||||
replicate_bug: bool = False,
|
||||
):
|
||||
super().__init__(
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=out_channels,
|
||||
use_conv=use_conv,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
up=up,
|
||||
down=down,
|
||||
)
|
||||
|
||||
self.time_mix_blocks = ResBlock(
|
||||
default(out_channels, channels),
|
||||
emb_channels,
|
||||
dropout=dropout,
|
||||
dims=3,
|
||||
out_channels=default(out_channels, channels),
|
||||
use_scale_shift_norm=False,
|
||||
use_conv=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=time_kernel_size,
|
||||
use_checkpoint=use_checkpoint,
|
||||
exchange_temb_dims=True,
|
||||
)
|
||||
self.time_mix_legacy = time_mix_legacy
|
||||
if self.time_mix_legacy:
|
||||
if merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", th.Tensor([merge_factor]))
|
||||
elif merge_strategy == "learned" or merge_strategy == "learned_with_images":
|
||||
self.register_parameter(
|
||||
"mix_factor", th.nn.Parameter(th.Tensor([merge_factor]))
|
||||
)
|
||||
elif merge_strategy == "fixed_with_images":
|
||||
self.mix_factor = None
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {merge_strategy}")
|
||||
|
||||
self.get_alpha_fn = functools.partial(
|
||||
get_alpha,
|
||||
merge_strategy,
|
||||
self.mix_factor,
|
||||
apply_sigmoid=apply_sigmoid_to_merge,
|
||||
)
|
||||
else:
|
||||
if False: # replicate_bug:
|
||||
logpy.warning(
|
||||
"*****************************************************************************************\n"
|
||||
"GRAVE WARNING: YOU'RE USING THE BUGGY LEGACY ALPHABLENDER!!! ARE YOU SURE YOU WANT THIS?!\n"
|
||||
"*****************************************************************************************"
|
||||
)
|
||||
self.time_mixer = LegacyAlphaBlenderWithBug(
|
||||
alpha=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
rearrange_pattern="b t -> b 1 t 1 1",
|
||||
)
|
||||
else:
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor,
|
||||
merge_strategy=merge_strategy,
|
||||
rearrange_pattern="b t -> b 1 t 1 1",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
emb: th.Tensor,
|
||||
num_video_frames: int,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
cond_view: Optional[th.Tensor] = None,
|
||||
cond_motion: Optional[th.Tensor] = None,
|
||||
) -> th.Tensor:
|
||||
x = super().forward(x, emb)
|
||||
|
||||
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
||||
|
||||
x = self.time_mix_blocks(
|
||||
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
||||
)
|
||||
|
||||
if self.time_mix_legacy:
|
||||
alpha = self.get_alpha_fn(image_only_indicator=image_only_indicator*0.0)
|
||||
x = alpha.to(x.dtype) * x + (1.0 - alpha).to(x.dtype) * x_mix
|
||||
else:
|
||||
x = self.time_mixer(
|
||||
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator*0.0
|
||||
)
|
||||
x = rearrange(x, "b c t h w -> (b t) c h w")
|
||||
return x
|
||||
|
||||
|
||||
class SpatialUNetModelWithTime(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
model_channels: int,
|
||||
out_channels: int,
|
||||
num_res_blocks: int,
|
||||
attention_resolutions: int,
|
||||
dropout: float = 0.0,
|
||||
channel_mult: List[int] = (1, 2, 4, 8),
|
||||
conv_resample: bool = True,
|
||||
dims: int = 2,
|
||||
num_classes: Optional[int] = None,
|
||||
use_checkpoint: bool = False,
|
||||
num_heads: int = -1,
|
||||
num_head_channels: int = -1,
|
||||
num_heads_upsample: int = -1,
|
||||
use_scale_shift_norm: bool = False,
|
||||
resblock_updown: bool = False,
|
||||
use_new_attention_order: bool = False,
|
||||
use_spatial_transformer: bool = False,
|
||||
transformer_depth: Union[List[int], int] = 1,
|
||||
transformer_depth_middle: Optional[int] = None,
|
||||
context_dim: Optional[int] = None,
|
||||
time_downup: bool = False,
|
||||
time_context_dim: Optional[int] = None,
|
||||
view_context_dim: Optional[int] = None,
|
||||
motion_context_dim: Optional[int] = None,
|
||||
extra_ff_mix_layer: bool = False,
|
||||
use_spatial_context: bool = False,
|
||||
time_block_merge_strategy: str = "fixed",
|
||||
time_block_merge_factor: float = 0.5,
|
||||
view_block_merge_factor: float = 0.5,
|
||||
motion_block_merge_factor: float = 0.5,
|
||||
spatial_transformer_attn_type: str = "softmax",
|
||||
time_kernel_size: Union[int, List[int]] = 3,
|
||||
use_linear_in_transformer: bool = False,
|
||||
legacy: bool = True,
|
||||
adm_in_channels: Optional[int] = None,
|
||||
use_temporal_resblock: bool = True,
|
||||
disable_temporal_crossattention: bool = False,
|
||||
time_mix_legacy: bool = True,
|
||||
max_ddpm_temb_period: int = 10000,
|
||||
replicate_time_mix_bug: bool = False,
|
||||
use_motion_attention: bool = False,
|
||||
use_camera_emb: bool = False,
|
||||
use_3d_attention: bool = False,
|
||||
separate_motion_merge_factor: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(transformer_depth, int):
|
||||
transformer_depth = len(channel_mult) * [transformer_depth]
|
||||
transformer_depth_middle = default(
|
||||
transformer_depth_middle, transformer_depth[-1]
|
||||
)
|
||||
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.use_temporal_resblocks = use_temporal_resblock
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "timestep":
|
||||
self.label_emb = nn.Sequential(
|
||||
Timestep(model_channels),
|
||||
nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
),
|
||||
)
|
||||
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
def get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=1,
|
||||
context_dim=None,
|
||||
use_checkpoint=False,
|
||||
disabled_sa=False,
|
||||
):
|
||||
if not use_spatial_transformer:
|
||||
return PostHocAttentionBlockWithTimeMixing(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
merge_strategy=time_block_merge_strategy,
|
||||
merge_factor=time_block_merge_factor,
|
||||
attn_mode=spatial_transformer_attn_type,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
)
|
||||
|
||||
elif use_motion_attention:
|
||||
return PostHocSpatialTransformerWithTimeMixingAndMotion(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=depth,
|
||||
context_dim=context_dim,
|
||||
time_context_dim=time_context_dim,
|
||||
motion_context_dim=motion_context_dim,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
use_camera_emb=use_camera_emb,
|
||||
use_3d_attention=use_3d_attention,
|
||||
separate_motion_merge_factor=separate_motion_merge_factor,
|
||||
adm_in_channels=adm_in_channels,
|
||||
merge_strategy=time_block_merge_strategy,
|
||||
merge_factor=time_block_merge_factor,
|
||||
merge_factor_motion=motion_block_merge_factor,
|
||||
checkpoint=use_checkpoint,
|
||||
use_linear=use_linear_in_transformer,
|
||||
attn_mode=spatial_transformer_attn_type,
|
||||
disable_self_attn=disabled_sa,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
time_mix_legacy=time_mix_legacy,
|
||||
max_time_embed_period=max_ddpm_temb_period,
|
||||
)
|
||||
|
||||
else:
|
||||
return PostHocSpatialTransformerWithTimeMixing(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=depth,
|
||||
context_dim=context_dim,
|
||||
time_context_dim=time_context_dim,
|
||||
dropout=dropout,
|
||||
ff_in=extra_ff_mix_layer,
|
||||
use_spatial_context=use_spatial_context,
|
||||
merge_strategy=time_block_merge_strategy,
|
||||
merge_factor=time_block_merge_factor,
|
||||
checkpoint=use_checkpoint,
|
||||
use_linear=use_linear_in_transformer,
|
||||
attn_mode=spatial_transformer_attn_type,
|
||||
disable_self_attn=disabled_sa,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
time_mix_legacy=time_mix_legacy,
|
||||
max_time_embed_period=max_ddpm_temb_period,
|
||||
)
|
||||
|
||||
def get_resblock(
|
||||
time_block_merge_factor,
|
||||
time_block_merge_strategy,
|
||||
time_kernel_size,
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_ch,
|
||||
dims,
|
||||
use_checkpoint,
|
||||
use_scale_shift_norm,
|
||||
down=False,
|
||||
up=False,
|
||||
):
|
||||
if self.use_temporal_resblocks:
|
||||
return PostHocResBlockWithTime(
|
||||
merge_factor=time_block_merge_factor,
|
||||
merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
time_mix_legacy=time_mix_legacy,
|
||||
replicate_bug=replicate_time_mix_bug,
|
||||
)
|
||||
else:
|
||||
return ResBlock(
|
||||
channels=ch,
|
||||
emb_channels=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_channels=out_ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=down,
|
||||
up=up,
|
||||
)
|
||||
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
dim_head = (
|
||||
ch // num_heads
|
||||
if use_spatial_transformer
|
||||
else num_head_channels
|
||||
)
|
||||
|
||||
layers.append(
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth[level],
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
disabled_sa=False,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
ds *= 2
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch,
|
||||
conv_resample,
|
||||
dims=dims,
|
||||
out_channels=out_ch,
|
||||
third_down=time_downup,
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
out_ch=None,
|
||||
dropout=dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth_middle,
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
),
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch,
|
||||
out_ch=None,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(num_res_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch + ich,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
dim_head = (
|
||||
ch // num_heads
|
||||
if use_spatial_transformer
|
||||
else num_head_channels
|
||||
)
|
||||
|
||||
layers.append(
|
||||
get_attention_layer(
|
||||
ch,
|
||||
num_heads,
|
||||
dim_head,
|
||||
depth=transformer_depth[level],
|
||||
context_dim=context_dim,
|
||||
use_checkpoint=use_checkpoint,
|
||||
disabled_sa=False,
|
||||
)
|
||||
)
|
||||
if level and i == num_res_blocks:
|
||||
out_ch = ch
|
||||
ds //= 2
|
||||
layers.append(
|
||||
get_resblock(
|
||||
time_block_merge_factor=time_block_merge_factor,
|
||||
time_block_merge_strategy=time_block_merge_strategy,
|
||||
time_kernel_size=time_kernel_size,
|
||||
ch=ch,
|
||||
time_embed_dim=time_embed_dim,
|
||||
dropout=dropout,
|
||||
out_ch=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(
|
||||
ch,
|
||||
conv_resample,
|
||||
dims=dims,
|
||||
out_channels=out_ch,
|
||||
third_up=time_downup,
|
||||
)
|
||||
)
|
||||
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: th.Tensor,
|
||||
timesteps: th.Tensor,
|
||||
context: Optional[th.Tensor] = None,
|
||||
y: Optional[th.Tensor] = None,
|
||||
cam: Optional[th.Tensor] = None,
|
||||
time_context: Optional[th.Tensor] = None,
|
||||
num_video_frames: Optional[int] = None,
|
||||
image_only_indicator: Optional[th.Tensor] = None,
|
||||
cond_view: Optional[th.Tensor] = None,
|
||||
cond_motion: Optional[th.Tensor] = None,
|
||||
time_step: Optional[int] = None,
|
||||
):
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional -> no, relax this TODO"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # 21 x 320
|
||||
emb = self.time_embed(t_emb) # 21 x 1280
|
||||
time = str(timesteps[0].data.cpu().numpy())
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y) # 21 x 1280
|
||||
|
||||
h = x # 21 x 8 x 64 x 64
|
||||
for i, module in enumerate(self.input_blocks):
|
||||
h = module(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
cam=cam,
|
||||
image_only_indicator=image_only_indicator,
|
||||
cond_view=cond_view,
|
||||
cond_motion=cond_motion,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
time_step=time_step,
|
||||
name='encoder_{}_{}'.format(time, i)
|
||||
)
|
||||
hs.append(h)
|
||||
h = self.middle_block(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
cam=cam,
|
||||
image_only_indicator=image_only_indicator,
|
||||
cond_view=cond_view,
|
||||
cond_motion=cond_motion,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
time_step=time_step,
|
||||
name='middle_{}_0'.format(time, i)
|
||||
)
|
||||
for i, module in enumerate(self.output_blocks):
|
||||
h = th.cat([h, hs.pop()], dim=1)
|
||||
h = module(
|
||||
h,
|
||||
emb,
|
||||
context=context,
|
||||
cam=cam,
|
||||
image_only_indicator=image_only_indicator,
|
||||
cond_view=cond_view,
|
||||
cond_motion=cond_motion,
|
||||
time_context=time_context,
|
||||
num_video_frames=num_video_frames,
|
||||
time_step=time_step,
|
||||
name='decoder_{}_{}'.format(time, i)
|
||||
)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
@@ -25,10 +25,21 @@ class OpenAIWrapper(IdentityWrapper):
|
||||
self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs
|
||||
) -> torch.Tensor:
|
||||
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1)
|
||||
return self.diffusion_model(
|
||||
x,
|
||||
timesteps=t,
|
||||
context=c.get("crossattn", None),
|
||||
y=c.get("vector", None),
|
||||
**kwargs,
|
||||
)
|
||||
if "cond_view" in c:
|
||||
return self.diffusion_model(
|
||||
x,
|
||||
timesteps=t,
|
||||
context=c.get("crossattn", None),
|
||||
y=c.get("vector", None),
|
||||
cond_view=c.get("cond_view", None),
|
||||
cond_motion=c.get("cond_motion", None),
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
return self.diffusion_model(
|
||||
x,
|
||||
timesteps=t,
|
||||
context=c.get("crossattn", None),
|
||||
y=c.get("vector", None),
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -69,8 +69,8 @@ class AbstractEmbModel(nn.Module):
|
||||
|
||||
|
||||
class GeneralConditioner(nn.Module):
|
||||
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
|
||||
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
|
||||
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat"} # , 5: "concat"}
|
||||
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1, "cond_view": 1, "cond_motion": 1}
|
||||
|
||||
def __init__(self, emb_models: Union[List, ListConfig]):
|
||||
super().__init__()
|
||||
@@ -138,7 +138,11 @@ class GeneralConditioner(nn.Module):
|
||||
if not isinstance(emb_out, (list, tuple)):
|
||||
emb_out = [emb_out]
|
||||
for emb in emb_out:
|
||||
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
||||
if embedder.input_key in ["cond_view", "cond_motion"]:
|
||||
out_key = embedder.input_key
|
||||
else:
|
||||
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
|
||||
|
||||
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
|
||||
emb = (
|
||||
expand_dims_like(
|
||||
@@ -994,7 +998,10 @@ class VideoPredictionEmbedderWithEncoder(AbstractEmbModel):
|
||||
sigmas = self.sigma_sampler(b).to(vid.device)
|
||||
if self.sigma_cond is not None:
|
||||
sigma_cond = self.sigma_cond(sigmas)
|
||||
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_copies)
|
||||
if self.n_cond_frames == 1:
|
||||
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_copies)
|
||||
else:
|
||||
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_cond_frames) # For SV4D
|
||||
sigmas = repeat(sigmas, "b -> (b t)", t=self.n_cond_frames)
|
||||
noise = torch.randn_like(vid)
|
||||
vid = vid + noise * append_dims(sigmas, vid.ndim)
|
||||
@@ -1017,8 +1024,9 @@ class VideoPredictionEmbedderWithEncoder(AbstractEmbModel):
|
||||
vid = torch.cat(all_out, dim=0)
|
||||
vid *= self.scale_factor
|
||||
|
||||
vid = rearrange(vid, "(b t) c h w -> b () (t c) h w", t=self.n_cond_frames)
|
||||
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies)
|
||||
if self.n_cond_frames == 1:
|
||||
vid = rearrange(vid, "(b t) c h w -> b () (t c) h w", t=self.n_cond_frames)
|
||||
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies)
|
||||
|
||||
return_val = (vid, sigma_cond) if self.sigma_cond is not None else vid
|
||||
|
||||
|
||||
625
sgm/modules/spacetime_attention.py
Normal file
@@ -0,0 +1,625 @@
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..modules.attention import *
|
||||
from ..modules.diffusionmodules.util import (
|
||||
AlphaBlender,
|
||||
get_alpha,
|
||||
linear,
|
||||
mixed_checkpoint,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
|
||||
class TimeMixSequential(nn.Sequential):
|
||||
def forward(self, x, context=None, timesteps=None):
|
||||
for layer in self:
|
||||
x = layer(x, context, timesteps)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BasicTransformerTimeMixBlock(nn.Module):
|
||||
ATTENTION_MODES = {
|
||||
"softmax": CrossAttention,
|
||||
"softmax-xformers": MemoryEfficientCrossAttention,
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
gated_ff=True,
|
||||
checkpoint=True,
|
||||
timesteps=None,
|
||||
ff_in=False,
|
||||
inner_dim=None,
|
||||
attn_mode="softmax",
|
||||
disable_self_attn=False,
|
||||
disable_temporal_crossattention=False,
|
||||
switch_temporal_ca_to_sa=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
attn_cls = self.ATTENTION_MODES[attn_mode]
|
||||
|
||||
self.ff_in = ff_in or inner_dim is not None
|
||||
if inner_dim is None:
|
||||
inner_dim = dim
|
||||
|
||||
assert int(n_heads * d_head) == inner_dim
|
||||
|
||||
self.is_res = inner_dim == dim
|
||||
|
||||
if self.ff_in:
|
||||
self.norm_in = nn.LayerNorm(dim)
|
||||
self.ff_in = FeedForward(
|
||||
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
|
||||
)
|
||||
|
||||
self.timesteps = timesteps
|
||||
self.disable_self_attn = disable_self_attn
|
||||
if self.disable_self_attn:
|
||||
self.attn1 = attn_cls(
|
||||
query_dim=inner_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
context_dim=context_dim,
|
||||
dropout=dropout,
|
||||
) # is a cross-attention
|
||||
else:
|
||||
self.attn1 = attn_cls(
|
||||
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is a self-attention
|
||||
|
||||
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
|
||||
|
||||
if disable_temporal_crossattention:
|
||||
if switch_temporal_ca_to_sa:
|
||||
raise ValueError
|
||||
else:
|
||||
self.attn2 = None
|
||||
else:
|
||||
self.norm2 = nn.LayerNorm(inner_dim)
|
||||
if switch_temporal_ca_to_sa:
|
||||
self.attn2 = attn_cls(
|
||||
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is a self-attention
|
||||
else:
|
||||
self.attn2 = attn_cls(
|
||||
query_dim=inner_dim,
|
||||
context_dim=context_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
dropout=dropout,
|
||||
) # is self-attn if context is none
|
||||
|
||||
self.norm1 = nn.LayerNorm(inner_dim)
|
||||
self.norm3 = nn.LayerNorm(inner_dim)
|
||||
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
||||
|
||||
self.checkpoint = checkpoint
|
||||
if self.checkpoint:
|
||||
logpy.info(f"{self.__class__.__name__} is using checkpointing")
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
|
||||
) -> torch.Tensor:
|
||||
if self.checkpoint:
|
||||
return checkpoint(self._forward, x, context, timesteps)
|
||||
else:
|
||||
return self._forward(x, context, timesteps=timesteps)
|
||||
|
||||
def _forward(self, x, context=None, timesteps=None):
|
||||
assert self.timesteps or timesteps
|
||||
assert not (self.timesteps and timesteps) or self.timesteps == timesteps
|
||||
timesteps = self.timesteps or timesteps
|
||||
B, S, C = x.shape
|
||||
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)
|
||||
|
||||
if self.ff_in:
|
||||
x_skip = x
|
||||
x = self.ff_in(self.norm_in(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
if self.disable_self_attn:
|
||||
x = self.attn1(self.norm1(x), context=context) + x
|
||||
else:
|
||||
x = self.attn1(self.norm1(x)) + x
|
||||
|
||||
if self.attn2 is not None:
|
||||
if self.switch_temporal_ca_to_sa:
|
||||
x = self.attn2(self.norm2(x)) + x
|
||||
else:
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
x_skip = x
|
||||
x = self.ff(self.norm3(x))
|
||||
if self.is_res:
|
||||
x += x_skip
|
||||
|
||||
x = rearrange(
|
||||
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
||||
)
|
||||
return x
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.ff.net[-1].weight
|
||||
|
||||
|
||||
class PostHocSpatialTransformerWithTimeMixing(SpatialTransformer):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
use_linear=False,
|
||||
context_dim=None,
|
||||
use_spatial_context=False,
|
||||
timesteps=None,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
apply_sigmoid_to_merge: bool = True,
|
||||
time_context_dim=None,
|
||||
ff_in=False,
|
||||
checkpoint=False,
|
||||
time_depth=1,
|
||||
attn_mode="softmax",
|
||||
disable_self_attn=False,
|
||||
disable_temporal_crossattention=False,
|
||||
time_mix_legacy: bool = True,
|
||||
max_time_embed_period: int = 10000,
|
||||
):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=depth,
|
||||
dropout=dropout,
|
||||
attn_type=attn_mode,
|
||||
use_checkpoint=checkpoint,
|
||||
context_dim=context_dim,
|
||||
use_linear=use_linear,
|
||||
disable_self_attn=disable_self_attn,
|
||||
)
|
||||
self.time_depth = time_depth
|
||||
self.depth = depth
|
||||
self.max_time_embed_period = max_time_embed_period
|
||||
|
||||
time_mix_d_head = d_head
|
||||
n_time_mix_heads = n_heads
|
||||
|
||||
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
||||
|
||||
inner_dim = n_heads * d_head
|
||||
if use_spatial_context:
|
||||
time_context_dim = context_dim
|
||||
|
||||
self.time_mix_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerTimeMixBlock(
|
||||
inner_dim,
|
||||
n_time_mix_heads,
|
||||
time_mix_d_head,
|
||||
dropout=dropout,
|
||||
context_dim=time_context_dim,
|
||||
timesteps=timesteps,
|
||||
checkpoint=checkpoint,
|
||||
ff_in=ff_in,
|
||||
inner_dim=time_mix_inner_dim,
|
||||
attn_mode=attn_mode,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
assert len(self.time_mix_blocks) == len(self.transformer_blocks)
|
||||
|
||||
self.use_spatial_context = use_spatial_context
|
||||
self.in_channels = in_channels
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
self.time_mix_time_embed = nn.Sequential(
|
||||
linear(self.in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
|
||||
self.time_mix_legacy = time_mix_legacy
|
||||
if self.time_mix_legacy:
|
||||
if merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([merge_factor]))
|
||||
elif merge_strategy == "learned" or merge_strategy == "learned_with_images":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([merge_factor]))
|
||||
)
|
||||
elif merge_strategy == "fixed_with_images":
|
||||
self.mix_factor = None
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {merge_strategy}")
|
||||
|
||||
self.get_alpha_fn = partial(
|
||||
get_alpha,
|
||||
merge_strategy,
|
||||
self.mix_factor,
|
||||
apply_sigmoid=apply_sigmoid_to_merge,
|
||||
is_attn=True,
|
||||
)
|
||||
else:
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
# cam: Optional[torch.Tensor] = None,
|
||||
time_context: Optional[torch.Tensor] = None,
|
||||
timesteps: Optional[int] = None,
|
||||
image_only_indicator: Optional[torch.Tensor] = None,
|
||||
cond_view: Optional[torch.Tensor] = None,
|
||||
cond_motion: Optional[torch.Tensor] = None,
|
||||
time_step: Optional[int] = None,
|
||||
name: Optional[str] = None,
|
||||
) -> torch.Tensor:
|
||||
_, _, h, w = x.shape
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
spatial_context = context
|
||||
|
||||
if self.use_spatial_context:
|
||||
assert (
|
||||
context.ndim == 3
|
||||
), f"n dims of spatial context should be 3 but are {context.ndim}"
|
||||
|
||||
time_context = context
|
||||
time_context_first_timestep = time_context[::timesteps]
|
||||
time_context = repeat(
|
||||
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
||||
)
|
||||
elif time_context is not None and not self.use_spatial_context:
|
||||
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
|
||||
if time_context.ndim == 2:
|
||||
time_context = rearrange(time_context, "b c -> b 1 c")
|
||||
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
|
||||
if self.time_mix_legacy:
|
||||
alpha = self.get_alpha_fn(image_only_indicator=image_only_indicator)
|
||||
|
||||
num_frames = torch.arange(timesteps, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(
|
||||
num_frames,
|
||||
self.in_channels,
|
||||
repeat_only=False,
|
||||
max_period=self.max_time_embed_period,
|
||||
)
|
||||
emb = self.time_mix_time_embed(t_emb)
|
||||
emb = emb[:, None, :]
|
||||
|
||||
for it_, (block, mix_block) in enumerate(
|
||||
zip(self.transformer_blocks, self.time_mix_blocks)
|
||||
):
|
||||
# spatial attention
|
||||
x = block(
|
||||
x,
|
||||
context=spatial_context,
|
||||
time_step=time_step,
|
||||
name=name + '_' + str(it_)
|
||||
)
|
||||
|
||||
x_mix = x
|
||||
x_mix = x_mix + emb
|
||||
|
||||
# temporal attention
|
||||
x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps)
|
||||
if self.time_mix_legacy:
|
||||
x = alpha.to(x.dtype) * x + (1.0 - alpha).to(x.dtype) * x_mix
|
||||
else:
|
||||
x = self.time_mixer(
|
||||
x_spatial=x,
|
||||
x_temporal=x_mix,
|
||||
image_only_indicator=image_only_indicator,
|
||||
)
|
||||
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
out = x + x_in
|
||||
return out
|
||||
|
||||
|
||||
class PostHocSpatialTransformerWithTimeMixingAndMotion(SpatialTransformer):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
use_linear=False,
|
||||
context_dim=None,
|
||||
use_spatial_context=False,
|
||||
use_camera_emb=False,
|
||||
use_3d_attention=False,
|
||||
separate_motion_merge_factor=False,
|
||||
adm_in_channels=None,
|
||||
timesteps=None,
|
||||
merge_strategy: str = "fixed",
|
||||
merge_factor: float = 0.5,
|
||||
merge_factor_motion: float = 0.5,
|
||||
apply_sigmoid_to_merge: bool = True,
|
||||
time_context_dim=None,
|
||||
motion_context_dim=None,
|
||||
ff_in=False,
|
||||
checkpoint=False,
|
||||
time_depth=1,
|
||||
attn_mode="softmax",
|
||||
disable_self_attn=False,
|
||||
disable_temporal_crossattention=False,
|
||||
time_mix_legacy: bool = True,
|
||||
max_time_embed_period: int = 10000,
|
||||
):
|
||||
super().__init__(
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=depth,
|
||||
dropout=dropout,
|
||||
attn_type=attn_mode,
|
||||
use_checkpoint=checkpoint,
|
||||
context_dim=context_dim,
|
||||
use_linear=use_linear,
|
||||
disable_self_attn=disable_self_attn,
|
||||
)
|
||||
self.time_depth = time_depth
|
||||
self.depth = depth
|
||||
self.max_time_embed_period = max_time_embed_period
|
||||
self.use_camera_emb = use_camera_emb
|
||||
self.motion_context_dim = motion_context_dim
|
||||
self.use_3d_attention = use_3d_attention
|
||||
self.separate_motion_merge_factor = separate_motion_merge_factor
|
||||
|
||||
time_mix_d_head = d_head
|
||||
n_time_mix_heads = n_heads
|
||||
|
||||
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
||||
|
||||
inner_dim = n_heads * d_head
|
||||
if use_spatial_context:
|
||||
time_context_dim = context_dim
|
||||
|
||||
# Camera attention layer
|
||||
self.time_mix_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerTimeMixBlock(
|
||||
inner_dim,
|
||||
n_time_mix_heads,
|
||||
time_mix_d_head,
|
||||
dropout=dropout,
|
||||
context_dim=time_context_dim,
|
||||
timesteps=timesteps,
|
||||
checkpoint=checkpoint,
|
||||
ff_in=ff_in,
|
||||
inner_dim=time_mix_inner_dim,
|
||||
attn_mode=attn_mode,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
# Motion attention layer
|
||||
self.motion_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerTimeMixBlock(
|
||||
inner_dim,
|
||||
n_time_mix_heads,
|
||||
time_mix_d_head,
|
||||
dropout=dropout,
|
||||
context_dim=motion_context_dim,
|
||||
timesteps=timesteps,
|
||||
checkpoint=checkpoint,
|
||||
ff_in=ff_in,
|
||||
inner_dim=time_mix_inner_dim,
|
||||
attn_mode=attn_mode,
|
||||
disable_self_attn=disable_self_attn,
|
||||
disable_temporal_crossattention=disable_temporal_crossattention,
|
||||
)
|
||||
for _ in range(self.depth)
|
||||
]
|
||||
)
|
||||
|
||||
assert len(self.time_mix_blocks) == len(self.transformer_blocks)
|
||||
|
||||
self.use_spatial_context = use_spatial_context
|
||||
self.in_channels = in_channels
|
||||
|
||||
time_embed_dim = self.in_channels * 4
|
||||
time_embed_channels = adm_in_channels if self.use_camera_emb else self.in_channels
|
||||
# Camera view embedding
|
||||
self.time_mix_time_embed = nn.Sequential(
|
||||
linear(time_embed_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
# Motion time embedding
|
||||
self.time_mix_motion_embed = nn.Sequential(
|
||||
linear(self.in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, self.in_channels),
|
||||
)
|
||||
|
||||
self.time_mix_legacy = time_mix_legacy
|
||||
if self.time_mix_legacy:
|
||||
if merge_strategy == "fixed":
|
||||
self.register_buffer("mix_factor", torch.Tensor([merge_factor]))
|
||||
elif merge_strategy == "learned" or merge_strategy == "learned_with_images":
|
||||
self.register_parameter(
|
||||
"mix_factor", torch.nn.Parameter(torch.Tensor([merge_factor]))
|
||||
)
|
||||
elif merge_strategy == "fixed_with_images":
|
||||
self.mix_factor = None
|
||||
else:
|
||||
raise ValueError(f"unknown merge strategy {merge_strategy}")
|
||||
|
||||
self.get_alpha_fn = partial(
|
||||
get_alpha,
|
||||
merge_strategy,
|
||||
self.mix_factor,
|
||||
apply_sigmoid=apply_sigmoid_to_merge,
|
||||
is_attn=True,
|
||||
)
|
||||
else:
|
||||
self.time_mixer = AlphaBlender(
|
||||
alpha=merge_factor, merge_strategy=merge_strategy
|
||||
)
|
||||
if self.separate_motion_merge_factor:
|
||||
self.time_mixer_motion = AlphaBlender(
|
||||
alpha=merge_factor_motion, merge_strategy=merge_strategy
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: Optional[torch.Tensor] = None,
|
||||
cam: Optional[torch.Tensor] = None,
|
||||
time_context: Optional[torch.Tensor] = None,
|
||||
timesteps: Optional[int] = None,
|
||||
image_only_indicator: Optional[torch.Tensor] = None,
|
||||
cond_view: Optional[torch.Tensor] = None,
|
||||
cond_motion: Optional[torch.Tensor] = None,
|
||||
time_step: Optional[int] = None,
|
||||
name: Optional[str] = None,
|
||||
) -> torch.Tensor:
|
||||
# context: b t 1024
|
||||
# cond_view: b*v 4 h w
|
||||
# cond_motion: b*t 4 h w
|
||||
# image_only_indicator: b t*v
|
||||
b, t, d1 = context.shape # CLIP
|
||||
v, d2 = cond_view.shape[0]//b, cond_view.shape[1] # VAE
|
||||
_, c, h, w = x.shape
|
||||
|
||||
x_in = x
|
||||
spatial_context = None
|
||||
if exists(context):
|
||||
spatial_context = context
|
||||
|
||||
cond_view = torch.nn.functional.interpolate(cond_view, size=(h,w), mode="bilinear") # b*v d h w
|
||||
spatial_context = context[:,:,None].repeat(1,1,v,1).reshape(-1,1,d1) # (b*t*v) 1 d1
|
||||
camera_context = context[:,:,None].repeat(1,1,h*w,1).reshape(-1,1,d1) # (b*t*h*w) 1 d1
|
||||
motion_context = cond_view.permute(0,2,3,1).reshape(-1,1,d2) # (b*v*h*w) 1 d2
|
||||
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c")
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
|
||||
if self.time_mix_legacy:
|
||||
alpha = self.get_alpha_fn(image_only_indicator=image_only_indicator)
|
||||
|
||||
num_frames = torch.arange(t, device=x.device)
|
||||
num_frames = repeat(num_frames, "t -> b t", b=b)
|
||||
num_frames = rearrange(num_frames, "b t -> (b t)")
|
||||
t_emb = timestep_embedding(
|
||||
num_frames,
|
||||
self.in_channels,
|
||||
repeat_only=False,
|
||||
max_period=self.max_time_embed_period,
|
||||
)
|
||||
emb_time = self.time_mix_motion_embed(t_emb)
|
||||
emb_time = emb_time[:, None, :] # b*t 1 c
|
||||
|
||||
if self.use_camera_emb:
|
||||
emb_view = self.time_mix_time_embed(cam.view(b,t,v,-1)[:,0].reshape(b*v,-1))
|
||||
emb_view = emb_view[:, None, :]
|
||||
else:
|
||||
num_views = torch.arange(v, device=x.device)
|
||||
num_views = repeat(num_views, "t -> b t", b=b)
|
||||
num_views = rearrange(num_views, "b t -> (b t)")
|
||||
v_emb = timestep_embedding(
|
||||
num_views,
|
||||
self.in_channels,
|
||||
repeat_only=False,
|
||||
max_period=self.max_time_embed_period,
|
||||
)
|
||||
emb_view = self.time_mix_time_embed(v_emb)
|
||||
emb_view = emb_view[:, None, :] # b*v 1 c
|
||||
|
||||
if self.use_3d_attention:
|
||||
emb_view = emb_view.repeat(1, h*w, 1).view(-1,1,c) # b*v*h*w 1 c
|
||||
|
||||
for it_, (block, time_block, mot_block) in enumerate(
|
||||
zip(self.transformer_blocks, self.time_mix_blocks, self.motion_blocks)
|
||||
):
|
||||
# Spatial attention
|
||||
x = block(
|
||||
x,
|
||||
context=spatial_context,
|
||||
)
|
||||
|
||||
# Camera attention
|
||||
if self.use_3d_attention:
|
||||
x = x.view(b, t, v, h*w, c).permute(0,2,3,1,4).reshape(-1,t,c) # b*v*h*w t c
|
||||
else:
|
||||
x = x.view(b, t, v, h*w, c).permute(0,2,1,3,4).reshape(b*v,-1,c) # b*v t*h*w c
|
||||
x_mix = x + emb_view
|
||||
x_mix = time_block(x_mix, context=camera_context, timesteps=v)
|
||||
if self.time_mix_legacy:
|
||||
x = alpha.to(x.dtype) * x + (1.0 - alpha).to(x.dtype) * x_mix
|
||||
else:
|
||||
x = self.time_mixer(
|
||||
x_spatial=x,
|
||||
x_temporal=x_mix,
|
||||
image_only_indicator=torch.zeros_like(image_only_indicator[:,:1].repeat(1,x.shape[0]//b)),
|
||||
)
|
||||
|
||||
# Motion attention
|
||||
if self.use_3d_attention:
|
||||
x = x.view(b, v, h*w, t, c).permute(0,3,1,2,4).reshape(b*t,-1,c) # b*t v*h*w c
|
||||
else:
|
||||
x = x.view(b, v, t, h*w, c).permute(0,2,1,3,4).reshape(b*t,-1,c) # b*t v*h*w c
|
||||
x_mix = x + emb_time
|
||||
x_mix = mot_block(x_mix, context=motion_context, timesteps=t)
|
||||
if self.time_mix_legacy:
|
||||
x = alpha.to(x.dtype) * x + (1.0 - alpha).to(x.dtype) * x_mix
|
||||
else:
|
||||
motion_mixer = self.time_mixer_motion if self.separate_motion_merge_factor else self.time_mixer
|
||||
x = motion_mixer(
|
||||
x_spatial=x,
|
||||
x_temporal=x_mix,
|
||||
image_only_indicator=torch.zeros_like(image_only_indicator[:,:1].repeat(1,x.shape[0]//b)),
|
||||
)
|
||||
|
||||
x = x.view(b, t, v, h*w, c).reshape(-1,h*w,c) # b*t*v h*w c
|
||||
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
out = x + x_in
|
||||
return out
|
||||