mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
Improved sampling (#69)
* New research features * Add new model specs --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com> * remove sd1.5 and change default refiner to 1.0 * remove asking second time for output * adapt model names * adjusted strength * Correctly pass prompt --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com>
This commit is contained in:
@@ -1,12 +1,20 @@
|
||||
import math
|
||||
import os
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import streamlit as st
|
||||
import torch
|
||||
from PIL import Image
|
||||
from einops import rearrange, repeat
|
||||
from omegaconf import OmegaConf
|
||||
from imwatermark import WatermarkEncoder
|
||||
from omegaconf import ListConfig, OmegaConf
|
||||
from PIL import Image
|
||||
from safetensors.torch import load_file as load_safetensors
|
||||
from torch import autocast
|
||||
from torchvision import transforms
|
||||
from torchvision.utils import make_grid
|
||||
|
||||
|
||||
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
|
||||
from sgm.modules.diffusionmodules.sampling import (
|
||||
DPMPP2MSampler,
|
||||
DPMPP2SAncestralSampler,
|
||||
@@ -15,29 +23,140 @@ from sgm.modules.diffusionmodules.sampling import (
|
||||
HeunEDMSampler,
|
||||
LinearMultistepSampler,
|
||||
)
|
||||
from sgm.inference.helpers import Img2ImgDiscretizationWrapper, embed_watermark
|
||||
from sgm.util import load_model_from_config
|
||||
from sgm.util import append_dims, instantiate_from_config
|
||||
|
||||
|
||||
class WatermarkEmbedder:
|
||||
def __init__(self, watermark):
|
||||
self.watermark = watermark
|
||||
self.num_bits = len(WATERMARK_BITS)
|
||||
self.encoder = WatermarkEncoder()
|
||||
self.encoder.set_watermark("bits", self.watermark)
|
||||
|
||||
def __call__(self, image: torch.Tensor):
|
||||
"""
|
||||
Adds a predefined watermark to the input image
|
||||
|
||||
Args:
|
||||
image: ([N,] B, C, H, W) in range [0, 1]
|
||||
|
||||
Returns:
|
||||
same as input but watermarked
|
||||
"""
|
||||
# watermarking libary expects input as cv2 BGR format
|
||||
squeeze = len(image.shape) == 4
|
||||
if squeeze:
|
||||
image = image[None, ...]
|
||||
n = image.shape[0]
|
||||
image_np = rearrange(
|
||||
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
|
||||
).numpy()[:, :, :, ::-1]
|
||||
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
|
||||
for k in range(image_np.shape[0]):
|
||||
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
|
||||
image = torch.from_numpy(
|
||||
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
|
||||
).to(image.device)
|
||||
image = torch.clamp(image / 255, min=0.0, max=1.0)
|
||||
if squeeze:
|
||||
image = image[0]
|
||||
return image
|
||||
|
||||
|
||||
# A fixed 48-bit message that was choosen at random
|
||||
# WATERMARK_MESSAGE = 0xB3EC907BB19E
|
||||
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
|
||||
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
||||
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
||||
embed_watemark = WatermarkEmbedder(WATERMARK_BITS)
|
||||
|
||||
|
||||
@st.cache_resource()
|
||||
def init_st(version_dict, load_ckpt=True):
|
||||
def init_st(version_dict, load_ckpt=True, load_filter=True):
|
||||
state = dict()
|
||||
if not "model" in state:
|
||||
config = version_dict["config"]
|
||||
ckpt = version_dict["ckpt"]
|
||||
|
||||
config = OmegaConf.load(config)
|
||||
model = load_model_from_config(config, ckpt if load_ckpt else None)
|
||||
model = model.to("cuda")
|
||||
model.conditioner.half()
|
||||
model.model.half()
|
||||
model, msg = load_model_from_config(config, ckpt if load_ckpt else None)
|
||||
|
||||
state["msg"] = msg
|
||||
state["model"] = model
|
||||
state["ckpt"] = ckpt if load_ckpt else None
|
||||
state["config"] = config
|
||||
if load_filter:
|
||||
state["filter"] = DeepFloydDataFiltering(verbose=False)
|
||||
return state
|
||||
|
||||
|
||||
def load_model(model):
|
||||
model.cuda()
|
||||
|
||||
|
||||
lowvram_mode = False
|
||||
|
||||
|
||||
def set_lowvram_mode(mode):
|
||||
global lowvram_mode
|
||||
lowvram_mode = mode
|
||||
|
||||
|
||||
def initial_model_load(model):
|
||||
global lowvram_mode
|
||||
if lowvram_mode:
|
||||
model.model.half()
|
||||
else:
|
||||
model.cuda()
|
||||
return model
|
||||
|
||||
|
||||
def unload_model(model):
|
||||
global lowvram_mode
|
||||
if lowvram_mode:
|
||||
model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def load_model_from_config(config, ckpt=None, verbose=True):
|
||||
model = instantiate_from_config(config.model)
|
||||
|
||||
if ckpt is not None:
|
||||
print(f"Loading model from {ckpt}")
|
||||
if ckpt.endswith("ckpt"):
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
global_step = pl_sd["global_step"]
|
||||
st.info(f"loaded ckpt from global step {global_step}")
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
elif ckpt.endswith("safetensors"):
|
||||
sd = load_safetensors(ckpt)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
msg = None
|
||||
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
print(m)
|
||||
if len(u) > 0 and verbose:
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
else:
|
||||
msg = None
|
||||
|
||||
model = initial_model_load(model)
|
||||
model.eval()
|
||||
return model, msg
|
||||
|
||||
|
||||
def get_unique_embedder_keys_from_conditioner(conditioner):
|
||||
return list(set([x.input_key for x in conditioner.embedders]))
|
||||
|
||||
|
||||
def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None):
|
||||
# Hardcoded demo settings; might undergo some changes in the future
|
||||
|
||||
@@ -81,23 +200,24 @@ def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None):
|
||||
value_dict["negative_aesthetic_score"] = 2.5
|
||||
|
||||
if key == "target_size_as_tuple":
|
||||
target_width = st.number_input(
|
||||
"target_width",
|
||||
value=init_dict["target_width"],
|
||||
min_value=16,
|
||||
)
|
||||
target_height = st.number_input(
|
||||
"target_height",
|
||||
value=init_dict["target_height"],
|
||||
min_value=16,
|
||||
)
|
||||
|
||||
value_dict["target_width"] = target_width
|
||||
value_dict["target_height"] = target_height
|
||||
value_dict["target_width"] = init_dict["target_width"]
|
||||
value_dict["target_height"] = init_dict["target_height"]
|
||||
|
||||
return value_dict
|
||||
|
||||
|
||||
def perform_save_locally(save_path, samples):
|
||||
os.makedirs(os.path.join(save_path), exist_ok=True)
|
||||
base_count = len(os.listdir(os.path.join(save_path)))
|
||||
samples = embed_watemark(samples)
|
||||
for sample in samples:
|
||||
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
|
||||
Image.fromarray(sample.astype(np.uint8)).save(
|
||||
os.path.join(save_path, f"{base_count:09}.png")
|
||||
)
|
||||
base_count += 1
|
||||
|
||||
|
||||
def init_save_locally(_dir, init_value: bool = False):
|
||||
save_locally = st.sidebar.checkbox("Save images locally", value=init_value)
|
||||
if save_locally:
|
||||
@@ -108,12 +228,58 @@ def init_save_locally(_dir, init_value: bool = False):
|
||||
return save_locally, save_path
|
||||
|
||||
|
||||
def show_samples(samples, outputs):
|
||||
if isinstance(samples, tuple):
|
||||
samples, _ = samples
|
||||
grid = embed_watermark(torch.stack([samples]))
|
||||
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
||||
outputs.image(grid.cpu().numpy())
|
||||
class Img2ImgDiscretizationWrapper:
|
||||
"""
|
||||
wraps a discretizer, and prunes the sigmas
|
||||
params:
|
||||
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
|
||||
"""
|
||||
|
||||
def __init__(self, discretization, strength: float = 1.0):
|
||||
self.discretization = discretization
|
||||
self.strength = strength
|
||||
assert 0.0 <= self.strength <= 1.0
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
# sigmas start large first, and decrease then
|
||||
sigmas = self.discretization(*args, **kwargs)
|
||||
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
||||
sigmas = torch.flip(sigmas, (0,))
|
||||
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
|
||||
print("prune index:", max(int(self.strength * len(sigmas)), 1))
|
||||
sigmas = torch.flip(sigmas, (0,))
|
||||
print(f"sigmas after pruning: ", sigmas)
|
||||
return sigmas
|
||||
|
||||
|
||||
class Txt2NoisyDiscretizationWrapper:
|
||||
"""
|
||||
wraps a discretizer, and prunes the sigmas
|
||||
params:
|
||||
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned)
|
||||
"""
|
||||
|
||||
def __init__(self, discretization, strength: float = 0.0, original_steps=None):
|
||||
self.discretization = discretization
|
||||
self.strength = strength
|
||||
self.original_steps = original_steps
|
||||
assert 0.0 <= self.strength <= 1.0
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
# sigmas start large first, and decrease then
|
||||
sigmas = self.discretization(*args, **kwargs)
|
||||
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
||||
sigmas = torch.flip(sigmas, (0,))
|
||||
if self.original_steps is None:
|
||||
steps = len(sigmas)
|
||||
else:
|
||||
steps = self.original_steps + 1
|
||||
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0)
|
||||
sigmas = sigmas[prune_index:]
|
||||
print("prune index:", prune_index)
|
||||
sigmas = torch.flip(sigmas, (0,))
|
||||
print(f"sigmas after pruning: ", sigmas)
|
||||
return sigmas
|
||||
|
||||
|
||||
def get_guider(key):
|
||||
@@ -158,16 +324,19 @@ def get_guider(key):
|
||||
|
||||
|
||||
def init_sampling(
|
||||
key=1, img2img_strength=1.0, use_identity_guider=False, get_num_samples=True
|
||||
key=1,
|
||||
img2img_strength=1.0,
|
||||
specify_num_samples=True,
|
||||
stage2strength=None,
|
||||
):
|
||||
if get_num_samples:
|
||||
num_rows = 1
|
||||
num_rows, num_cols = 1, 1
|
||||
if specify_num_samples:
|
||||
num_cols = st.number_input(
|
||||
f"num cols #{key}", value=2, min_value=1, max_value=10
|
||||
)
|
||||
|
||||
steps = st.sidebar.number_input(
|
||||
f"steps #{key}", value=50, min_value=1, max_value=1000
|
||||
f"steps #{key}", value=40, min_value=1, max_value=1000
|
||||
)
|
||||
sampler = st.sidebar.selectbox(
|
||||
f"Sampler #{key}",
|
||||
@@ -201,9 +370,11 @@ def init_sampling(
|
||||
sampler.discretization = Img2ImgDiscretizationWrapper(
|
||||
sampler.discretization, strength=img2img_strength
|
||||
)
|
||||
if get_num_samples:
|
||||
return num_rows, num_cols, sampler
|
||||
return sampler
|
||||
if stage2strength is not None:
|
||||
sampler.discretization = Txt2NoisyDiscretizationWrapper(
|
||||
sampler.discretization, strength=stage2strength, original_steps=steps
|
||||
)
|
||||
return sampler, num_rows, num_cols
|
||||
|
||||
|
||||
def get_discretization(discretization, key=1):
|
||||
@@ -336,3 +507,238 @@ def get_init_img(batch_size=1, key=None):
|
||||
init_image = load_img(key=key).cuda()
|
||||
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
|
||||
return init_image
|
||||
|
||||
|
||||
def do_sample(
|
||||
model,
|
||||
sampler,
|
||||
value_dict,
|
||||
num_samples,
|
||||
H,
|
||||
W,
|
||||
C,
|
||||
F,
|
||||
force_uc_zero_embeddings: List = None,
|
||||
batch2model_input: List = None,
|
||||
return_latents=False,
|
||||
filter=None,
|
||||
):
|
||||
if force_uc_zero_embeddings is None:
|
||||
force_uc_zero_embeddings = []
|
||||
if batch2model_input is None:
|
||||
batch2model_input = []
|
||||
|
||||
st.text("Sampling")
|
||||
|
||||
outputs = st.empty()
|
||||
precision_scope = autocast
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with model.ema_scope():
|
||||
num_samples = [num_samples]
|
||||
load_model(model.conditioner)
|
||||
batch, batch_uc = get_batch(
|
||||
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
||||
value_dict,
|
||||
num_samples,
|
||||
)
|
||||
for key in batch:
|
||||
if isinstance(batch[key], torch.Tensor):
|
||||
print(key, batch[key].shape)
|
||||
elif isinstance(batch[key], list):
|
||||
print(key, [len(l) for l in batch[key]])
|
||||
else:
|
||||
print(key, batch[key])
|
||||
c, uc = model.conditioner.get_unconditional_conditioning(
|
||||
batch,
|
||||
batch_uc=batch_uc,
|
||||
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
||||
)
|
||||
unload_model(model.conditioner)
|
||||
|
||||
for k in c:
|
||||
if not k == "crossattn":
|
||||
c[k], uc[k] = map(
|
||||
lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc)
|
||||
)
|
||||
|
||||
additional_model_inputs = {}
|
||||
for k in batch2model_input:
|
||||
additional_model_inputs[k] = batch[k]
|
||||
|
||||
shape = (math.prod(num_samples), C, H // F, W // F)
|
||||
randn = torch.randn(shape).to("cuda")
|
||||
|
||||
def denoiser(input, sigma, c):
|
||||
return model.denoiser(
|
||||
model.model, input, sigma, c, **additional_model_inputs
|
||||
)
|
||||
|
||||
load_model(model.denoiser)
|
||||
load_model(model.model)
|
||||
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
|
||||
unload_model(model.model)
|
||||
unload_model(model.denoiser)
|
||||
|
||||
load_model(model.first_stage_model)
|
||||
samples_x = model.decode_first_stage(samples_z)
|
||||
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
unload_model(model.first_stage_model)
|
||||
|
||||
if filter is not None:
|
||||
samples = filter(samples)
|
||||
|
||||
grid = torch.stack([samples])
|
||||
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
||||
outputs.image(grid.cpu().numpy())
|
||||
|
||||
if return_latents:
|
||||
return samples, samples_z
|
||||
return samples
|
||||
|
||||
|
||||
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"):
|
||||
# Hardcoded demo setups; might undergo some changes in the future
|
||||
|
||||
batch = {}
|
||||
batch_uc = {}
|
||||
|
||||
for key in keys:
|
||||
if key == "txt":
|
||||
batch["txt"] = (
|
||||
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
|
||||
.reshape(N)
|
||||
.tolist()
|
||||
)
|
||||
batch_uc["txt"] = (
|
||||
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
|
||||
.reshape(N)
|
||||
.tolist()
|
||||
)
|
||||
elif key == "original_size_as_tuple":
|
||||
batch["original_size_as_tuple"] = (
|
||||
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
|
||||
.to(device)
|
||||
.repeat(*N, 1)
|
||||
)
|
||||
elif key == "crop_coords_top_left":
|
||||
batch["crop_coords_top_left"] = (
|
||||
torch.tensor(
|
||||
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
|
||||
)
|
||||
.to(device)
|
||||
.repeat(*N, 1)
|
||||
)
|
||||
elif key == "aesthetic_score":
|
||||
batch["aesthetic_score"] = (
|
||||
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
|
||||
)
|
||||
batch_uc["aesthetic_score"] = (
|
||||
torch.tensor([value_dict["negative_aesthetic_score"]])
|
||||
.to(device)
|
||||
.repeat(*N, 1)
|
||||
)
|
||||
|
||||
elif key == "target_size_as_tuple":
|
||||
batch["target_size_as_tuple"] = (
|
||||
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
|
||||
.to(device)
|
||||
.repeat(*N, 1)
|
||||
)
|
||||
else:
|
||||
batch[key] = value_dict[key]
|
||||
|
||||
for key in batch.keys():
|
||||
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
||||
batch_uc[key] = torch.clone(batch[key])
|
||||
return batch, batch_uc
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def do_img2img(
|
||||
img,
|
||||
model,
|
||||
sampler,
|
||||
value_dict,
|
||||
num_samples,
|
||||
force_uc_zero_embeddings=[],
|
||||
additional_kwargs={},
|
||||
offset_noise_level: int = 0.0,
|
||||
return_latents=False,
|
||||
skip_encode=False,
|
||||
filter=None,
|
||||
add_noise=True,
|
||||
):
|
||||
st.text("Sampling")
|
||||
|
||||
outputs = st.empty()
|
||||
precision_scope = autocast
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with model.ema_scope():
|
||||
load_model(model.conditioner)
|
||||
batch, batch_uc = get_batch(
|
||||
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
||||
value_dict,
|
||||
[num_samples],
|
||||
)
|
||||
c, uc = model.conditioner.get_unconditional_conditioning(
|
||||
batch,
|
||||
batch_uc=batch_uc,
|
||||
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
||||
)
|
||||
unload_model(model.conditioner)
|
||||
for k in c:
|
||||
c[k], uc[k] = map(lambda y: y[k][:num_samples].to("cuda"), (c, uc))
|
||||
|
||||
for k in additional_kwargs:
|
||||
c[k] = uc[k] = additional_kwargs[k]
|
||||
if skip_encode:
|
||||
z = img
|
||||
else:
|
||||
load_model(model.first_stage_model)
|
||||
z = model.encode_first_stage(img)
|
||||
unload_model(model.first_stage_model)
|
||||
|
||||
noise = torch.randn_like(z)
|
||||
|
||||
sigmas = sampler.discretization(sampler.num_steps).cuda()
|
||||
sigma = sigmas[0]
|
||||
|
||||
st.info(f"all sigmas: {sigmas}")
|
||||
st.info(f"noising sigma: {sigma}")
|
||||
if offset_noise_level > 0.0:
|
||||
noise = noise + offset_noise_level * append_dims(
|
||||
torch.randn(z.shape[0], device=z.device), z.ndim
|
||||
)
|
||||
if add_noise:
|
||||
noised_z = z + noise * append_dims(sigma, z.ndim).cuda()
|
||||
noised_z = noised_z / torch.sqrt(
|
||||
1.0 + sigmas[0] ** 2.0
|
||||
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
|
||||
else:
|
||||
noised_z = z / torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
||||
|
||||
def denoiser(x, sigma, c):
|
||||
return model.denoiser(model.model, x, sigma, c)
|
||||
|
||||
load_model(model.denoiser)
|
||||
load_model(model.model)
|
||||
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
|
||||
unload_model(model.model)
|
||||
unload_model(model.denoiser)
|
||||
|
||||
load_model(model.first_stage_model)
|
||||
samples_x = model.decode_first_stage(samples_z)
|
||||
unload_model(model.first_stage_model)
|
||||
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if filter is not None:
|
||||
samples = filter(samples)
|
||||
|
||||
grid = embed_watemark(torch.stack([samples]))
|
||||
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
||||
outputs.image(grid.cpu().numpy())
|
||||
if return_latents:
|
||||
return samples, samples_z
|
||||
return samples
|
||||
|
||||
Reference in New Issue
Block a user