mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 22:34:22 +01:00
* New research features * Add new model specs --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com> * remove sd1.5 and change default refiner to 1.0 * remove asking second time for output * adapt model names * adjusted strength * Correctly pass prompt --------- Co-authored-by: Dominik Lorenz <53151171+qp-qp@users.noreply.github.com>
745 lines
24 KiB
Python
745 lines
24 KiB
Python
import math
|
|
import os
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
import streamlit as st
|
|
import torch
|
|
from einops import rearrange, repeat
|
|
from imwatermark import WatermarkEncoder
|
|
from omegaconf import ListConfig, OmegaConf
|
|
from PIL import Image
|
|
from safetensors.torch import load_file as load_safetensors
|
|
from torch import autocast
|
|
from torchvision import transforms
|
|
from torchvision.utils import make_grid
|
|
|
|
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
|
|
from sgm.modules.diffusionmodules.sampling import (
|
|
DPMPP2MSampler,
|
|
DPMPP2SAncestralSampler,
|
|
EulerAncestralSampler,
|
|
EulerEDMSampler,
|
|
HeunEDMSampler,
|
|
LinearMultistepSampler,
|
|
)
|
|
from sgm.util import append_dims, instantiate_from_config
|
|
|
|
|
|
class WatermarkEmbedder:
|
|
def __init__(self, watermark):
|
|
self.watermark = watermark
|
|
self.num_bits = len(WATERMARK_BITS)
|
|
self.encoder = WatermarkEncoder()
|
|
self.encoder.set_watermark("bits", self.watermark)
|
|
|
|
def __call__(self, image: torch.Tensor):
|
|
"""
|
|
Adds a predefined watermark to the input image
|
|
|
|
Args:
|
|
image: ([N,] B, C, H, W) in range [0, 1]
|
|
|
|
Returns:
|
|
same as input but watermarked
|
|
"""
|
|
# watermarking libary expects input as cv2 BGR format
|
|
squeeze = len(image.shape) == 4
|
|
if squeeze:
|
|
image = image[None, ...]
|
|
n = image.shape[0]
|
|
image_np = rearrange(
|
|
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
|
|
).numpy()[:, :, :, ::-1]
|
|
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
|
|
for k in range(image_np.shape[0]):
|
|
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
|
|
image = torch.from_numpy(
|
|
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
|
|
).to(image.device)
|
|
image = torch.clamp(image / 255, min=0.0, max=1.0)
|
|
if squeeze:
|
|
image = image[0]
|
|
return image
|
|
|
|
|
|
# A fixed 48-bit message that was choosen at random
|
|
# WATERMARK_MESSAGE = 0xB3EC907BB19E
|
|
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
|
|
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
|
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
|
embed_watemark = WatermarkEmbedder(WATERMARK_BITS)
|
|
|
|
|
|
@st.cache_resource()
|
|
def init_st(version_dict, load_ckpt=True, load_filter=True):
|
|
state = dict()
|
|
if not "model" in state:
|
|
config = version_dict["config"]
|
|
ckpt = version_dict["ckpt"]
|
|
|
|
config = OmegaConf.load(config)
|
|
model, msg = load_model_from_config(config, ckpt if load_ckpt else None)
|
|
|
|
state["msg"] = msg
|
|
state["model"] = model
|
|
state["ckpt"] = ckpt if load_ckpt else None
|
|
state["config"] = config
|
|
if load_filter:
|
|
state["filter"] = DeepFloydDataFiltering(verbose=False)
|
|
return state
|
|
|
|
|
|
def load_model(model):
|
|
model.cuda()
|
|
|
|
|
|
lowvram_mode = False
|
|
|
|
|
|
def set_lowvram_mode(mode):
|
|
global lowvram_mode
|
|
lowvram_mode = mode
|
|
|
|
|
|
def initial_model_load(model):
|
|
global lowvram_mode
|
|
if lowvram_mode:
|
|
model.model.half()
|
|
else:
|
|
model.cuda()
|
|
return model
|
|
|
|
|
|
def unload_model(model):
|
|
global lowvram_mode
|
|
if lowvram_mode:
|
|
model.cpu()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def load_model_from_config(config, ckpt=None, verbose=True):
|
|
model = instantiate_from_config(config.model)
|
|
|
|
if ckpt is not None:
|
|
print(f"Loading model from {ckpt}")
|
|
if ckpt.endswith("ckpt"):
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
global_step = pl_sd["global_step"]
|
|
st.info(f"loaded ckpt from global step {global_step}")
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
elif ckpt.endswith("safetensors"):
|
|
sd = load_safetensors(ckpt)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
msg = None
|
|
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
|
|
if len(m) > 0 and verbose:
|
|
print("missing keys:")
|
|
print(m)
|
|
if len(u) > 0 and verbose:
|
|
print("unexpected keys:")
|
|
print(u)
|
|
else:
|
|
msg = None
|
|
|
|
model = initial_model_load(model)
|
|
model.eval()
|
|
return model, msg
|
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner):
|
|
return list(set([x.input_key for x in conditioner.embedders]))
|
|
|
|
|
|
def init_embedder_options(keys, init_dict, prompt=None, negative_prompt=None):
|
|
# Hardcoded demo settings; might undergo some changes in the future
|
|
|
|
value_dict = {}
|
|
for key in keys:
|
|
if key == "txt":
|
|
if prompt is None:
|
|
prompt = st.text_input(
|
|
"Prompt", "A professional photograph of an astronaut riding a pig"
|
|
)
|
|
if negative_prompt is None:
|
|
negative_prompt = st.text_input("Negative prompt", "")
|
|
|
|
value_dict["prompt"] = prompt
|
|
value_dict["negative_prompt"] = negative_prompt
|
|
|
|
if key == "original_size_as_tuple":
|
|
orig_width = st.number_input(
|
|
"orig_width",
|
|
value=init_dict["orig_width"],
|
|
min_value=16,
|
|
)
|
|
orig_height = st.number_input(
|
|
"orig_height",
|
|
value=init_dict["orig_height"],
|
|
min_value=16,
|
|
)
|
|
|
|
value_dict["orig_width"] = orig_width
|
|
value_dict["orig_height"] = orig_height
|
|
|
|
if key == "crop_coords_top_left":
|
|
crop_coord_top = st.number_input("crop_coords_top", value=0, min_value=0)
|
|
crop_coord_left = st.number_input("crop_coords_left", value=0, min_value=0)
|
|
|
|
value_dict["crop_coords_top"] = crop_coord_top
|
|
value_dict["crop_coords_left"] = crop_coord_left
|
|
|
|
if key == "aesthetic_score":
|
|
value_dict["aesthetic_score"] = 6.0
|
|
value_dict["negative_aesthetic_score"] = 2.5
|
|
|
|
if key == "target_size_as_tuple":
|
|
value_dict["target_width"] = init_dict["target_width"]
|
|
value_dict["target_height"] = init_dict["target_height"]
|
|
|
|
return value_dict
|
|
|
|
|
|
def perform_save_locally(save_path, samples):
|
|
os.makedirs(os.path.join(save_path), exist_ok=True)
|
|
base_count = len(os.listdir(os.path.join(save_path)))
|
|
samples = embed_watemark(samples)
|
|
for sample in samples:
|
|
sample = 255.0 * rearrange(sample.cpu().numpy(), "c h w -> h w c")
|
|
Image.fromarray(sample.astype(np.uint8)).save(
|
|
os.path.join(save_path, f"{base_count:09}.png")
|
|
)
|
|
base_count += 1
|
|
|
|
|
|
def init_save_locally(_dir, init_value: bool = False):
|
|
save_locally = st.sidebar.checkbox("Save images locally", value=init_value)
|
|
if save_locally:
|
|
save_path = st.text_input("Save path", value=os.path.join(_dir, "samples"))
|
|
else:
|
|
save_path = None
|
|
|
|
return save_locally, save_path
|
|
|
|
|
|
class Img2ImgDiscretizationWrapper:
|
|
"""
|
|
wraps a discretizer, and prunes the sigmas
|
|
params:
|
|
strength: float between 0.0 and 1.0. 1.0 means full sampling (all sigmas are returned)
|
|
"""
|
|
|
|
def __init__(self, discretization, strength: float = 1.0):
|
|
self.discretization = discretization
|
|
self.strength = strength
|
|
assert 0.0 <= self.strength <= 1.0
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
# sigmas start large first, and decrease then
|
|
sigmas = self.discretization(*args, **kwargs)
|
|
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
|
sigmas = torch.flip(sigmas, (0,))
|
|
sigmas = sigmas[: max(int(self.strength * len(sigmas)), 1)]
|
|
print("prune index:", max(int(self.strength * len(sigmas)), 1))
|
|
sigmas = torch.flip(sigmas, (0,))
|
|
print(f"sigmas after pruning: ", sigmas)
|
|
return sigmas
|
|
|
|
|
|
class Txt2NoisyDiscretizationWrapper:
|
|
"""
|
|
wraps a discretizer, and prunes the sigmas
|
|
params:
|
|
strength: float between 0.0 and 1.0. 0.0 means full sampling (all sigmas are returned)
|
|
"""
|
|
|
|
def __init__(self, discretization, strength: float = 0.0, original_steps=None):
|
|
self.discretization = discretization
|
|
self.strength = strength
|
|
self.original_steps = original_steps
|
|
assert 0.0 <= self.strength <= 1.0
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
# sigmas start large first, and decrease then
|
|
sigmas = self.discretization(*args, **kwargs)
|
|
print(f"sigmas after discretization, before pruning img2img: ", sigmas)
|
|
sigmas = torch.flip(sigmas, (0,))
|
|
if self.original_steps is None:
|
|
steps = len(sigmas)
|
|
else:
|
|
steps = self.original_steps + 1
|
|
prune_index = max(min(int(self.strength * steps) - 1, steps - 1), 0)
|
|
sigmas = sigmas[prune_index:]
|
|
print("prune index:", prune_index)
|
|
sigmas = torch.flip(sigmas, (0,))
|
|
print(f"sigmas after pruning: ", sigmas)
|
|
return sigmas
|
|
|
|
|
|
def get_guider(key):
|
|
guider = st.sidebar.selectbox(
|
|
f"Discretization #{key}",
|
|
[
|
|
"VanillaCFG",
|
|
"IdentityGuider",
|
|
],
|
|
)
|
|
|
|
if guider == "IdentityGuider":
|
|
guider_config = {
|
|
"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"
|
|
}
|
|
elif guider == "VanillaCFG":
|
|
scale = st.number_input(
|
|
f"cfg-scale #{key}", value=5.0, min_value=0.0, max_value=100.0
|
|
)
|
|
|
|
thresholder = st.sidebar.selectbox(
|
|
f"Thresholder #{key}",
|
|
[
|
|
"None",
|
|
],
|
|
)
|
|
|
|
if thresholder == "None":
|
|
dyn_thresh_config = {
|
|
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
|
|
}
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
guider_config = {
|
|
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
|
|
"params": {"scale": scale, "dyn_thresh_config": dyn_thresh_config},
|
|
}
|
|
else:
|
|
raise NotImplementedError
|
|
return guider_config
|
|
|
|
|
|
def init_sampling(
|
|
key=1,
|
|
img2img_strength=1.0,
|
|
specify_num_samples=True,
|
|
stage2strength=None,
|
|
):
|
|
num_rows, num_cols = 1, 1
|
|
if specify_num_samples:
|
|
num_cols = st.number_input(
|
|
f"num cols #{key}", value=2, min_value=1, max_value=10
|
|
)
|
|
|
|
steps = st.sidebar.number_input(
|
|
f"steps #{key}", value=40, min_value=1, max_value=1000
|
|
)
|
|
sampler = st.sidebar.selectbox(
|
|
f"Sampler #{key}",
|
|
[
|
|
"EulerEDMSampler",
|
|
"HeunEDMSampler",
|
|
"EulerAncestralSampler",
|
|
"DPMPP2SAncestralSampler",
|
|
"DPMPP2MSampler",
|
|
"LinearMultistepSampler",
|
|
],
|
|
0,
|
|
)
|
|
discretization = st.sidebar.selectbox(
|
|
f"Discretization #{key}",
|
|
[
|
|
"LegacyDDPMDiscretization",
|
|
"EDMDiscretization",
|
|
],
|
|
)
|
|
|
|
discretization_config = get_discretization(discretization, key=key)
|
|
|
|
guider_config = get_guider(key=key)
|
|
|
|
sampler = get_sampler(sampler, steps, discretization_config, guider_config, key=key)
|
|
if img2img_strength < 1.0:
|
|
st.warning(
|
|
f"Wrapping {sampler.__class__.__name__} with Img2ImgDiscretizationWrapper"
|
|
)
|
|
sampler.discretization = Img2ImgDiscretizationWrapper(
|
|
sampler.discretization, strength=img2img_strength
|
|
)
|
|
if stage2strength is not None:
|
|
sampler.discretization = Txt2NoisyDiscretizationWrapper(
|
|
sampler.discretization, strength=stage2strength, original_steps=steps
|
|
)
|
|
return sampler, num_rows, num_cols
|
|
|
|
|
|
def get_discretization(discretization, key=1):
|
|
if discretization == "LegacyDDPMDiscretization":
|
|
discretization_config = {
|
|
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
|
|
}
|
|
elif discretization == "EDMDiscretization":
|
|
sigma_min = st.number_input(f"sigma_min #{key}", value=0.03) # 0.0292
|
|
sigma_max = st.number_input(f"sigma_max #{key}", value=14.61) # 14.6146
|
|
rho = st.number_input(f"rho #{key}", value=3.0)
|
|
discretization_config = {
|
|
"target": "sgm.modules.diffusionmodules.discretizer.EDMDiscretization",
|
|
"params": {
|
|
"sigma_min": sigma_min,
|
|
"sigma_max": sigma_max,
|
|
"rho": rho,
|
|
},
|
|
}
|
|
|
|
return discretization_config
|
|
|
|
|
|
def get_sampler(sampler_name, steps, discretization_config, guider_config, key=1):
|
|
if sampler_name == "EulerEDMSampler" or sampler_name == "HeunEDMSampler":
|
|
s_churn = st.sidebar.number_input(f"s_churn #{key}", value=0.0, min_value=0.0)
|
|
s_tmin = st.sidebar.number_input(f"s_tmin #{key}", value=0.0, min_value=0.0)
|
|
s_tmax = st.sidebar.number_input(f"s_tmax #{key}", value=999.0, min_value=0.0)
|
|
s_noise = st.sidebar.number_input(f"s_noise #{key}", value=1.0, min_value=0.0)
|
|
|
|
if sampler_name == "EulerEDMSampler":
|
|
sampler = EulerEDMSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
s_churn=s_churn,
|
|
s_tmin=s_tmin,
|
|
s_tmax=s_tmax,
|
|
s_noise=s_noise,
|
|
verbose=True,
|
|
)
|
|
elif sampler_name == "HeunEDMSampler":
|
|
sampler = HeunEDMSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
s_churn=s_churn,
|
|
s_tmin=s_tmin,
|
|
s_tmax=s_tmax,
|
|
s_noise=s_noise,
|
|
verbose=True,
|
|
)
|
|
elif (
|
|
sampler_name == "EulerAncestralSampler"
|
|
or sampler_name == "DPMPP2SAncestralSampler"
|
|
):
|
|
s_noise = st.sidebar.number_input("s_noise", value=1.0, min_value=0.0)
|
|
eta = st.sidebar.number_input("eta", value=1.0, min_value=0.0)
|
|
|
|
if sampler_name == "EulerAncestralSampler":
|
|
sampler = EulerAncestralSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
eta=eta,
|
|
s_noise=s_noise,
|
|
verbose=True,
|
|
)
|
|
elif sampler_name == "DPMPP2SAncestralSampler":
|
|
sampler = DPMPP2SAncestralSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
eta=eta,
|
|
s_noise=s_noise,
|
|
verbose=True,
|
|
)
|
|
elif sampler_name == "DPMPP2MSampler":
|
|
sampler = DPMPP2MSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
verbose=True,
|
|
)
|
|
elif sampler_name == "LinearMultistepSampler":
|
|
order = st.sidebar.number_input("order", value=4, min_value=1)
|
|
sampler = LinearMultistepSampler(
|
|
num_steps=steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
order=order,
|
|
verbose=True,
|
|
)
|
|
else:
|
|
raise ValueError(f"unknown sampler {sampler_name}!")
|
|
|
|
return sampler
|
|
|
|
|
|
def get_interactive_image(key=None) -> Image.Image:
|
|
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key)
|
|
if image is not None:
|
|
image = Image.open(image)
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
return image
|
|
|
|
|
|
def load_img(display=True, key=None):
|
|
image = get_interactive_image(key=key)
|
|
if image is None:
|
|
return None
|
|
if display:
|
|
st.image(image)
|
|
w, h = image.size
|
|
print(f"loaded input image of size ({w}, {h})")
|
|
|
|
transform = transforms.Compose(
|
|
[
|
|
transforms.ToTensor(),
|
|
transforms.Lambda(lambda x: x * 2.0 - 1.0),
|
|
]
|
|
)
|
|
img = transform(image)[None, ...]
|
|
st.text(f"input min/max/mean: {img.min():.3f}/{img.max():.3f}/{img.mean():.3f}")
|
|
return img
|
|
|
|
|
|
def get_init_img(batch_size=1, key=None):
|
|
init_image = load_img(key=key).cuda()
|
|
init_image = repeat(init_image, "1 ... -> b ...", b=batch_size)
|
|
return init_image
|
|
|
|
|
|
def do_sample(
|
|
model,
|
|
sampler,
|
|
value_dict,
|
|
num_samples,
|
|
H,
|
|
W,
|
|
C,
|
|
F,
|
|
force_uc_zero_embeddings: List = None,
|
|
batch2model_input: List = None,
|
|
return_latents=False,
|
|
filter=None,
|
|
):
|
|
if force_uc_zero_embeddings is None:
|
|
force_uc_zero_embeddings = []
|
|
if batch2model_input is None:
|
|
batch2model_input = []
|
|
|
|
st.text("Sampling")
|
|
|
|
outputs = st.empty()
|
|
precision_scope = autocast
|
|
with torch.no_grad():
|
|
with precision_scope("cuda"):
|
|
with model.ema_scope():
|
|
num_samples = [num_samples]
|
|
load_model(model.conditioner)
|
|
batch, batch_uc = get_batch(
|
|
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
|
value_dict,
|
|
num_samples,
|
|
)
|
|
for key in batch:
|
|
if isinstance(batch[key], torch.Tensor):
|
|
print(key, batch[key].shape)
|
|
elif isinstance(batch[key], list):
|
|
print(key, [len(l) for l in batch[key]])
|
|
else:
|
|
print(key, batch[key])
|
|
c, uc = model.conditioner.get_unconditional_conditioning(
|
|
batch,
|
|
batch_uc=batch_uc,
|
|
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
|
)
|
|
unload_model(model.conditioner)
|
|
|
|
for k in c:
|
|
if not k == "crossattn":
|
|
c[k], uc[k] = map(
|
|
lambda y: y[k][: math.prod(num_samples)].to("cuda"), (c, uc)
|
|
)
|
|
|
|
additional_model_inputs = {}
|
|
for k in batch2model_input:
|
|
additional_model_inputs[k] = batch[k]
|
|
|
|
shape = (math.prod(num_samples), C, H // F, W // F)
|
|
randn = torch.randn(shape).to("cuda")
|
|
|
|
def denoiser(input, sigma, c):
|
|
return model.denoiser(
|
|
model.model, input, sigma, c, **additional_model_inputs
|
|
)
|
|
|
|
load_model(model.denoiser)
|
|
load_model(model.model)
|
|
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
|
|
unload_model(model.model)
|
|
unload_model(model.denoiser)
|
|
|
|
load_model(model.first_stage_model)
|
|
samples_x = model.decode_first_stage(samples_z)
|
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
|
unload_model(model.first_stage_model)
|
|
|
|
if filter is not None:
|
|
samples = filter(samples)
|
|
|
|
grid = torch.stack([samples])
|
|
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
|
outputs.image(grid.cpu().numpy())
|
|
|
|
if return_latents:
|
|
return samples, samples_z
|
|
return samples
|
|
|
|
|
|
def get_batch(keys, value_dict, N: Union[List, ListConfig], device="cuda"):
|
|
# Hardcoded demo setups; might undergo some changes in the future
|
|
|
|
batch = {}
|
|
batch_uc = {}
|
|
|
|
for key in keys:
|
|
if key == "txt":
|
|
batch["txt"] = (
|
|
np.repeat([value_dict["prompt"]], repeats=math.prod(N))
|
|
.reshape(N)
|
|
.tolist()
|
|
)
|
|
batch_uc["txt"] = (
|
|
np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
|
|
.reshape(N)
|
|
.tolist()
|
|
)
|
|
elif key == "original_size_as_tuple":
|
|
batch["original_size_as_tuple"] = (
|
|
torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
|
|
.to(device)
|
|
.repeat(*N, 1)
|
|
)
|
|
elif key == "crop_coords_top_left":
|
|
batch["crop_coords_top_left"] = (
|
|
torch.tensor(
|
|
[value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
|
|
)
|
|
.to(device)
|
|
.repeat(*N, 1)
|
|
)
|
|
elif key == "aesthetic_score":
|
|
batch["aesthetic_score"] = (
|
|
torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
|
|
)
|
|
batch_uc["aesthetic_score"] = (
|
|
torch.tensor([value_dict["negative_aesthetic_score"]])
|
|
.to(device)
|
|
.repeat(*N, 1)
|
|
)
|
|
|
|
elif key == "target_size_as_tuple":
|
|
batch["target_size_as_tuple"] = (
|
|
torch.tensor([value_dict["target_height"], value_dict["target_width"]])
|
|
.to(device)
|
|
.repeat(*N, 1)
|
|
)
|
|
else:
|
|
batch[key] = value_dict[key]
|
|
|
|
for key in batch.keys():
|
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
|
batch_uc[key] = torch.clone(batch[key])
|
|
return batch, batch_uc
|
|
|
|
|
|
@torch.no_grad()
|
|
def do_img2img(
|
|
img,
|
|
model,
|
|
sampler,
|
|
value_dict,
|
|
num_samples,
|
|
force_uc_zero_embeddings=[],
|
|
additional_kwargs={},
|
|
offset_noise_level: int = 0.0,
|
|
return_latents=False,
|
|
skip_encode=False,
|
|
filter=None,
|
|
add_noise=True,
|
|
):
|
|
st.text("Sampling")
|
|
|
|
outputs = st.empty()
|
|
precision_scope = autocast
|
|
with torch.no_grad():
|
|
with precision_scope("cuda"):
|
|
with model.ema_scope():
|
|
load_model(model.conditioner)
|
|
batch, batch_uc = get_batch(
|
|
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
|
value_dict,
|
|
[num_samples],
|
|
)
|
|
c, uc = model.conditioner.get_unconditional_conditioning(
|
|
batch,
|
|
batch_uc=batch_uc,
|
|
force_uc_zero_embeddings=force_uc_zero_embeddings,
|
|
)
|
|
unload_model(model.conditioner)
|
|
for k in c:
|
|
c[k], uc[k] = map(lambda y: y[k][:num_samples].to("cuda"), (c, uc))
|
|
|
|
for k in additional_kwargs:
|
|
c[k] = uc[k] = additional_kwargs[k]
|
|
if skip_encode:
|
|
z = img
|
|
else:
|
|
load_model(model.first_stage_model)
|
|
z = model.encode_first_stage(img)
|
|
unload_model(model.first_stage_model)
|
|
|
|
noise = torch.randn_like(z)
|
|
|
|
sigmas = sampler.discretization(sampler.num_steps).cuda()
|
|
sigma = sigmas[0]
|
|
|
|
st.info(f"all sigmas: {sigmas}")
|
|
st.info(f"noising sigma: {sigma}")
|
|
if offset_noise_level > 0.0:
|
|
noise = noise + offset_noise_level * append_dims(
|
|
torch.randn(z.shape[0], device=z.device), z.ndim
|
|
)
|
|
if add_noise:
|
|
noised_z = z + noise * append_dims(sigma, z.ndim).cuda()
|
|
noised_z = noised_z / torch.sqrt(
|
|
1.0 + sigmas[0] ** 2.0
|
|
) # Note: hardcoded to DDPM-like scaling. need to generalize later.
|
|
else:
|
|
noised_z = z / torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
|
|
|
def denoiser(x, sigma, c):
|
|
return model.denoiser(model.model, x, sigma, c)
|
|
|
|
load_model(model.denoiser)
|
|
load_model(model.model)
|
|
samples_z = sampler(denoiser, noised_z, cond=c, uc=uc)
|
|
unload_model(model.model)
|
|
unload_model(model.denoiser)
|
|
|
|
load_model(model.first_stage_model)
|
|
samples_x = model.decode_first_stage(samples_z)
|
|
unload_model(model.first_stage_model)
|
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
if filter is not None:
|
|
samples = filter(samples)
|
|
|
|
grid = embed_watemark(torch.stack([samples]))
|
|
grid = rearrange(grid, "n b c h w -> (n h) (b w) c")
|
|
outputs.image(grid.cpu().numpy())
|
|
if return_latents:
|
|
return samples, samples_z
|
|
return samples
|