path helper & model swapping rewrite

This commit is contained in:
Stephan Auerhahn
2023-08-10 04:35:59 -07:00
parent fc498bfaef
commit e190ecc60b
4 changed files with 94 additions and 57 deletions

View File

@@ -20,9 +20,7 @@ from sgm.inference.api import (
SamplingPipeline,
Thresholder,
)
from sgm.inference.helpers import (
embed_watermark,
)
from sgm.inference.helpers import embed_watermark, CudaModelLoader
@st.cache_resource()
@@ -35,10 +33,12 @@ def init_st(spec: SamplingSpec, load_ckpt=True, load_filter=True) -> Dict[str, A
if lowvram_mode:
pipeline = SamplingPipeline(
model_spec=spec, use_fp16=True, device="cuda", swap_device="cpu"
model_spec=spec,
use_fp16=True,
model_loader=CudaModelLoader(device="cuda", swap_device="cpu"),
)
else:
pipeline = SamplingPipeline(model_spec=spec, use_fp16=True, device="cuda")
pipeline = SamplingPipeline(model_spec=spec, use_fp16=False)
state["spec"] = spec
state["model"] = pipeline

View File

@@ -2,10 +2,11 @@ from dataclasses import dataclass, asdict
from enum import Enum
from omegaconf import OmegaConf
import os
import pathlib
from sgm.inference.helpers import (
do_sample,
do_img2img,
BaseDeviceModelLoader,
CudaModelLoader,
Img2ImgDiscretizationWrapper,
Txt2NoisyDiscretizationWrapper,
)
@@ -17,7 +18,7 @@ from sgm.modules.diffusionmodules.sampling import (
DPMPP2MSampler,
LinearMultistepSampler,
)
from sgm.util import load_model_from_config
from sgm.util import load_model_from_config, get_configs_path, get_checkpoints_path
import torch
from typing import Optional, Dict, Any, Union
@@ -163,11 +164,10 @@ class SamplingPipeline:
self,
model_id: Optional[ModelArchitecture] = None,
model_spec: Optional[SamplingSpec] = None,
model_path: Optional[Union[str, pathlib.Path]] = None,
config_path: Optional[Union[str, pathlib.Path]] = None,
device: Union[str, torch.device] = "cuda",
swap_device: Optional[Union[str, torch.device]] = None,
model_path: Optional[str] = None,
config_path: Optional[str] = None,
use_fp16: bool = True,
model_loader: BaseDeviceModelLoader = CudaModelLoader(device="cuda"),
) -> None:
"""
Sampling pipeline for generating images from a model.
@@ -176,9 +176,8 @@ class SamplingPipeline:
@param model_spec: Model specification to use. If not specified, model_id must be specified.
@param model_path: Path to model checkpoints folder.
@param config_path: Path to model config folder.
@param device: Device to use for sampling.
@param swap_device: Device to swap models to when not in use.
@param use_fp16: Whether to use fp16 for sampling.
@param model_loader: Model loader class to use. Defaults to CudaModelLoader.
"""
self.model_id = model_id
@@ -192,11 +191,11 @@ class SamplingPipeline:
raise ValueError("Either model_id or model_spec should be provided")
if model_path is None:
model_path = self._resolve_default_path("checkpoints")
model_path = get_checkpoints_path()
if config_path is None:
config_path = self._resolve_default_path("configs/inference")
self.config = str(pathlib.Path(config_path) / self.specs.config)
self.ckpt = str(pathlib.Path(model_path) / self.specs.ckpt)
config_path = get_configs_path()
self.config = os.path.join(config_path, "inference", self.specs.config)
self.ckpt = os.path.join(model_path, self.specs.ckpt)
if not os.path.exists(self.config):
raise ValueError(
f"Config {self.config} not found, check model spec or config_path"
@@ -210,19 +209,6 @@ class SamplingPipeline:
load_device = device if swap_device is None else swap_device
self.model = self._load_model(device=load_device, use_fp16=use_fp16)
def _resolve_default_path(self, suffix: str) -> pathlib.Path:
# Resolves a path relative to the root of the module or repo
repo_path = pathlib.Path(__file__).parent.parent.parent.resolve() / suffix
module_path = pathlib.Path(__file__).parent.parent.resolve() / suffix
path = module_path / suffix
if not os.path.exists(path):
path = repo_path / suffix
if not os.path.exists(path):
raise ValueError(
f"Default locations for {suffix} not found, please specify path"
)
return pathlib.Path(path)
def _load_model(self, device="cuda", use_fp16=True):
config = OmegaConf.load(self.config)
model = load_model_from_config(config, self.ckpt)

View File

@@ -10,6 +10,7 @@ from einops import rearrange
from imwatermark import WatermarkEncoder
from omegaconf import ListConfig
from torch import autocast
from abc import ABC, abstractmethod
from sgm.util import append_dims
@@ -353,35 +354,67 @@ def do_img2img(
return samples
@contextlib.contextmanager
def swap_to_device(
model: Union[torch.nn.Module, torch.Tensor], device: Union[torch.device, str]
):
class BaseDeviceModelLoader(ABC):
"""
Context manager that swaps a model or tensor to a device, and then swaps it back to its original device
when the context is exited.
Base class for device managers. Device managers are used to manage the device used for a model.
"""
if isinstance(model, torch.Tensor):
original_device = model.device
else:
param = next(model.parameters(), None)
if param is not None:
original_device = param.device
else:
buf = next(model.buffers(), None)
if buf is not None:
original_device = buf.device
else:
# If device could not be found, do nothing
return
device = torch.device(device)
if device != original_device:
model.to(device)
@abstractmethod
def __init__(self, device: Union[torch.device, str]):
"""
Args:
device (Union[torch.device, str]): The device to use for the model.
"""
pass
yield
def load(self, model: torch.nn.Module):
"""
Loads a model to the device.
"""
pass
if device != original_device:
model.to(original_device)
if torch.cuda.is_available():
torch.cuda.empty_cache()
@contextlib.contextmanager
def use(self, model: torch.nn.Module):
"""
Context manager that ensures a model is on the correct device during use.
"""
yield
class CudaModelLoader(BaseDeviceModelLoader):
"""
Device manager that loads a model to a CUDA device, optionally swapping to CPU when not in use.
"""
def __init__(
self,
device: Union[torch.device, str] = "cuda",
swap_device: Union[torch.device, str] = None,
):
"""
Args:
device (Union[torch.device, str]): The device to use for the model.
"""
self.device = torch.device(device)
self.swap_device = (
torch.device(swap_device) if swap_device is not None else self.device
)
def load(self, model: Union[torch.nn.Module, torch.Tensor]):
"""
Loads a model to the device.
"""
model.to(self.swap_device)
@contextlib.contextmanager
def use(self, model: Union[torch.nn.Module, torch.Tensor]):
"""
Context manager that ensures a model is on the correct device during use.
"""
if self.device != self.swap_device:
model.to(self.device)
yield
if self.device != self.swap_device:
model.to(self.swap_device)
if torch.cuda.is_available():
torch.cuda.empty_cache()

View File

@@ -230,6 +230,24 @@ def load_model_from_config(config, ckpt, verbose=True, freeze=True):
return model
def get_checkpoints_path() -> str:
"""
Get the `checkpoints` directory.
This could be in the root of the repository for a working copy,
or in the cwd for other use cases.
"""
this_dir = os.path.dirname(__file__)
candidates = (
os.path.join(this_dir, "checkpoints"),
os.path.join(os.getcwd(), "checkpoints"),
)
for candidate in candidates:
candidate = os.path.abspath(candidate)
if os.path.isdir(candidate):
return candidate
raise FileNotFoundError(f"Could not find SGM checkpoints in {candidates}")
def get_configs_path() -> str:
"""
Get the `configs` directory.