mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 14:24:21 +01:00
Black and isort
This commit is contained in:
@@ -1,41 +1,42 @@
|
||||
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), 'generative-models'))
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), "generative-models"))
|
||||
|
||||
import math
|
||||
import random
|
||||
import uuid
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import cv2
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
from fire import Fire
|
||||
from huggingface_hub import hf_hub_download
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
from scripts.sampling.simple_video_sample import (
|
||||
get_batch, get_unique_embedder_keys_from_conditioner, load_model)
|
||||
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
||||
DeepFloydDataFiltering
|
||||
from sgm.inference.helpers import embed_watermark
|
||||
from sgm.util import default, instantiate_from_config
|
||||
from scripts.sampling.simple_video_sample import load_model, get_unique_embedder_keys_from_conditioner, get_batch
|
||||
|
||||
import gradio as gr
|
||||
import uuid
|
||||
import random
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
# To download all svd models
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints")
|
||||
#hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints")
|
||||
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
||||
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints")
|
||||
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints")
|
||||
|
||||
|
||||
# Define the repo, local directory and filename
|
||||
repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models
|
||||
repo_id = "stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models
|
||||
filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models
|
||||
local_dir = "checkpoints"
|
||||
local_file_path = os.path.join(local_dir, filename)
|
||||
@@ -43,11 +44,7 @@ local_file_path = os.path.join(local_dir, filename)
|
||||
# Check if the file already exists
|
||||
if not os.path.exists(local_file_path):
|
||||
# If the file doesn't exist, download it
|
||||
hf_hub_download(
|
||||
repo_id=repo_id,
|
||||
filename=filename,
|
||||
local_dir=local_dir
|
||||
)
|
||||
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
||||
print("File downloaded.")
|
||||
else:
|
||||
print("File already exists. No need to download.")
|
||||
@@ -71,6 +68,7 @@ model, filter = load_model(
|
||||
num_steps,
|
||||
)
|
||||
|
||||
|
||||
def sample(
|
||||
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
||||
seed: Optional[int] = None,
|
||||
@@ -82,14 +80,14 @@ def sample(
|
||||
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
||||
device: str = "cuda",
|
||||
output_folder: str = "outputs",
|
||||
progress=gr.Progress(track_tqdm=True)
|
||||
progress=gr.Progress(track_tqdm=True),
|
||||
):
|
||||
"""
|
||||
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
||||
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
||||
"""
|
||||
fps_id = int(fps_id ) #casting float slider values to int)
|
||||
if(randomize_seed):
|
||||
fps_id = int(fps_id) # casting float slider values to int)
|
||||
if randomize_seed:
|
||||
seed = random.randint(0, max_64_bit_int)
|
||||
|
||||
torch.manual_seed(seed)
|
||||
@@ -260,23 +258,50 @@ def resize_image(image_path, output_size=(1024, 576)):
|
||||
|
||||
return cropped_image
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
|
||||
gr.Markdown(
|
||||
"""# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
|
||||
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
|
||||
''')
|
||||
"""
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
image = gr.Image(label="Upload your image", type="filepath")
|
||||
generate_btn = gr.Button("Generate")
|
||||
video = gr.Video()
|
||||
with gr.Accordion("Advanced options", open=False):
|
||||
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
||||
seed = gr.Slider(
|
||||
label="Seed",
|
||||
value=42,
|
||||
randomize=True,
|
||||
minimum=0,
|
||||
maximum=max_64_bit_int,
|
||||
step=1,
|
||||
)
|
||||
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
||||
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
||||
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
||||
motion_bucket_id = gr.Slider(
|
||||
label="Motion bucket id",
|
||||
info="Controls how much motion to add/remove from the image",
|
||||
value=127,
|
||||
minimum=1,
|
||||
maximum=255,
|
||||
)
|
||||
fps_id = gr.Slider(
|
||||
label="Frames per second",
|
||||
info="The length of your video in seconds will be 25/fps",
|
||||
value=6,
|
||||
minimum=5,
|
||||
maximum=30,
|
||||
)
|
||||
|
||||
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
||||
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
||||
generate_btn.click(
|
||||
fn=sample,
|
||||
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
||||
outputs=[video, seed],
|
||||
api_name="video",
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.queue(max_size=20)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from streamlit_helpers import *
|
||||
from st_keyup import st_keyup
|
||||
from streamlit_helpers import *
|
||||
|
||||
from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler
|
||||
|
||||
VERSION2SPECS = {
|
||||
@@ -203,8 +204,12 @@ if __name__ == "__main__":
|
||||
),
|
||||
)
|
||||
sampler.n_sample_steps = n_steps
|
||||
default_prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe."
|
||||
prompt = st_keyup("Enter a value", value=default_prompt, debounce=300, key="interactive_text")
|
||||
default_prompt = (
|
||||
"A cinematic shot of a baby racoon wearing an intricate italian priest robe."
|
||||
)
|
||||
prompt = st_keyup(
|
||||
"Enter a value", value=default_prompt, debounce=300, key="interactive_text"
|
||||
)
|
||||
|
||||
cols = st.columns([1, 5, 1])
|
||||
if mode != "skip":
|
||||
@@ -217,7 +222,13 @@ if __name__ == "__main__":
|
||||
|
||||
sampler.noise_sampler = SeededNoise(seed=st.session_state.seed)
|
||||
out = sample(
|
||||
model, sampler, H=512, W=512, seed=st.session_state.seed, prompt=prompt, filter=state.get("filter")
|
||||
model,
|
||||
sampler,
|
||||
H=512,
|
||||
W=512,
|
||||
seed=st.session_state.seed,
|
||||
prompt=prompt,
|
||||
filter=state.get("filter"),
|
||||
)
|
||||
with cols[1]:
|
||||
st.image(out[0])
|
||||
|
||||
@@ -3,14 +3,12 @@ from typing import Callable, Iterable, Union
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from sgm.modules.diffusionmodules.model import (
|
||||
XFORMERS_IS_AVAILABLE,
|
||||
AttnBlock,
|
||||
Decoder,
|
||||
from sgm.modules.diffusionmodules.model import (XFORMERS_IS_AVAILABLE,
|
||||
AttnBlock, Decoder,
|
||||
MemoryEfficientAttnBlock,
|
||||
ResnetBlock,
|
||||
)
|
||||
from sgm.modules.diffusionmodules.openaimodel import ResBlock, timestep_embedding
|
||||
ResnetBlock)
|
||||
from sgm.modules.diffusionmodules.openaimodel import (ResBlock,
|
||||
timestep_embedding)
|
||||
from sgm.modules.video_attention import VideoTransformerBlock
|
||||
from sgm.util import partialclass
|
||||
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import torch
|
||||
|
||||
from ..modules.attention import *
|
||||
from ..modules.diffusionmodules.util import AlphaBlender, linear, timestep_embedding
|
||||
from ..modules.diffusionmodules.util import (AlphaBlender, linear,
|
||||
timestep_embedding)
|
||||
|
||||
|
||||
class TimeMixSequential(nn.Sequential):
|
||||
|
||||
Reference in New Issue
Block a user