mirror of
https://github.com/Stability-AI/generative-models.git
synced 2025-12-19 14:24:21 +01:00
309 lines
12 KiB
Python
309 lines
12 KiB
Python
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
|
|
import os
|
|
import sys
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "generative-models"))
|
|
|
|
import math
|
|
import random
|
|
import uuid
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import cv2
|
|
import gradio as gr
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange, repeat
|
|
from fire import Fire
|
|
from huggingface_hub import hf_hub_download
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
from torchvision.transforms import ToTensor
|
|
|
|
from scripts.sampling.simple_video_sample import (
|
|
get_batch, get_unique_embedder_keys_from_conditioner, load_model)
|
|
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
|
DeepFloydDataFiltering
|
|
from sgm.inference.helpers import embed_watermark
|
|
from sgm.util import default, instantiate_from_config
|
|
|
|
# To download all svd models
|
|
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
|
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints")
|
|
# hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints")
|
|
|
|
|
|
# Define the repo, local directory and filename
|
|
repo_id = "stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models
|
|
filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models
|
|
local_dir = "checkpoints"
|
|
local_file_path = os.path.join(local_dir, filename)
|
|
|
|
# Check if the file already exists
|
|
if not os.path.exists(local_file_path):
|
|
# If the file doesn't exist, download it
|
|
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
|
print("File downloaded.")
|
|
else:
|
|
print("File already exists. No need to download.")
|
|
|
|
|
|
version = "svd_xt_1_1" # replace with 'svd_xt' or 'svd' for other models
|
|
device = "cuda"
|
|
max_64_bit_int = 2**63 - 1
|
|
|
|
if version == "svd_xt_1_1":
|
|
num_frames = 25
|
|
num_steps = 30
|
|
model_config = "scripts/sampling/configs/svd_xt_1_1.yaml"
|
|
else:
|
|
raise ValueError(f"Version {version} does not exist.")
|
|
|
|
model, filter = load_model(
|
|
model_config,
|
|
device,
|
|
num_frames,
|
|
num_steps,
|
|
)
|
|
|
|
|
|
def sample(
|
|
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
|
seed: Optional[int] = None,
|
|
randomize_seed: bool = True,
|
|
motion_bucket_id: int = 127,
|
|
fps_id: int = 6,
|
|
version: str = "svd_xt_1_1",
|
|
cond_aug: float = 0.02,
|
|
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
|
device: str = "cuda",
|
|
output_folder: str = "outputs",
|
|
progress=gr.Progress(track_tqdm=True),
|
|
):
|
|
"""
|
|
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
|
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
|
"""
|
|
fps_id = int(fps_id) # casting float slider values to int)
|
|
if randomize_seed:
|
|
seed = random.randint(0, max_64_bit_int)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
path = Path(input_path)
|
|
all_img_paths = []
|
|
if path.is_file():
|
|
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
|
all_img_paths = [input_path]
|
|
else:
|
|
raise ValueError("Path is not valid image file.")
|
|
elif path.is_dir():
|
|
all_img_paths = sorted(
|
|
[
|
|
f
|
|
for f in path.iterdir()
|
|
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
|
]
|
|
)
|
|
if len(all_img_paths) == 0:
|
|
raise ValueError("Folder does not contain any images.")
|
|
else:
|
|
raise ValueError
|
|
|
|
for input_img_path in all_img_paths:
|
|
with Image.open(input_img_path) as image:
|
|
if image.mode == "RGBA":
|
|
image = image.convert("RGB")
|
|
w, h = image.size
|
|
|
|
if h % 64 != 0 or w % 64 != 0:
|
|
width, height = map(lambda x: x - x % 64, (w, h))
|
|
image = image.resize((width, height))
|
|
print(
|
|
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
|
)
|
|
|
|
image = ToTensor()(image)
|
|
image = image * 2.0 - 1.0
|
|
|
|
image = image.unsqueeze(0).to(device)
|
|
H, W = image.shape[2:]
|
|
assert image.shape[1] == 3
|
|
F = 8
|
|
C = 4
|
|
shape = (num_frames, C, H // F, W // F)
|
|
if (H, W) != (576, 1024):
|
|
print(
|
|
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
|
)
|
|
if motion_bucket_id > 255:
|
|
print(
|
|
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
|
)
|
|
|
|
if fps_id < 5:
|
|
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
|
|
|
if fps_id > 30:
|
|
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
|
|
|
value_dict = {}
|
|
value_dict["motion_bucket_id"] = motion_bucket_id
|
|
value_dict["fps_id"] = fps_id
|
|
value_dict["cond_aug"] = cond_aug
|
|
value_dict["cond_frames_without_noise"] = image
|
|
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
|
value_dict["cond_aug"] = cond_aug
|
|
|
|
with torch.no_grad():
|
|
with torch.autocast(device):
|
|
batch, batch_uc = get_batch(
|
|
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
|
value_dict,
|
|
[1, num_frames],
|
|
T=num_frames,
|
|
device=device,
|
|
)
|
|
c, uc = model.conditioner.get_unconditional_conditioning(
|
|
batch,
|
|
batch_uc=batch_uc,
|
|
force_uc_zero_embeddings=[
|
|
"cond_frames",
|
|
"cond_frames_without_noise",
|
|
],
|
|
)
|
|
|
|
for k in ["crossattn", "concat"]:
|
|
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
|
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
|
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
|
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
|
|
|
randn = torch.randn(shape, device=device)
|
|
|
|
additional_model_inputs = {}
|
|
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
|
2, num_frames
|
|
).to(device)
|
|
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
|
|
|
def denoiser(input, sigma, c):
|
|
return model.denoiser(
|
|
model.model, input, sigma, c, **additional_model_inputs
|
|
)
|
|
|
|
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
|
model.en_and_decode_n_samples_a_time = decoding_t
|
|
samples_x = model.decode_first_stage(samples_z)
|
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
writer = cv2.VideoWriter(
|
|
video_path,
|
|
cv2.VideoWriter_fourcc(*"mp4v"),
|
|
fps_id + 1,
|
|
(samples.shape[-1], samples.shape[-2]),
|
|
)
|
|
|
|
samples = embed_watermark(samples)
|
|
samples = filter(samples)
|
|
vid = (
|
|
(rearrange(samples, "t c h w -> t h w c") * 255)
|
|
.cpu()
|
|
.numpy()
|
|
.astype(np.uint8)
|
|
)
|
|
for frame in vid:
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
writer.write(frame)
|
|
writer.release()
|
|
|
|
return video_path, seed
|
|
|
|
|
|
def resize_image(image_path, output_size=(1024, 576)):
|
|
image = Image.open(image_path)
|
|
# Calculate aspect ratios
|
|
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
|
image_aspect = image.width / image.height # Aspect ratio of the original image
|
|
|
|
# Resize then crop if the original image is larger
|
|
if image_aspect > target_aspect:
|
|
# Resize the image to match the target height, maintaining aspect ratio
|
|
new_height = output_size[1]
|
|
new_width = int(new_height * image_aspect)
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
# Calculate coordinates for cropping
|
|
left = (new_width - output_size[0]) / 2
|
|
top = 0
|
|
right = (new_width + output_size[0]) / 2
|
|
bottom = output_size[1]
|
|
else:
|
|
# Resize the image to match the target width, maintaining aspect ratio
|
|
new_width = output_size[0]
|
|
new_height = int(new_width / image_aspect)
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
# Calculate coordinates for cropping
|
|
left = 0
|
|
top = (new_height - output_size[1]) / 2
|
|
right = output_size[0]
|
|
bottom = (new_height + output_size[1]) / 2
|
|
|
|
# Crop the image
|
|
cropped_image = resized_image.crop((left, top, right, bottom))
|
|
|
|
return cropped_image
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(
|
|
"""# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
|
|
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
|
|
"""
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
image = gr.Image(label="Upload your image", type="filepath")
|
|
generate_btn = gr.Button("Generate")
|
|
video = gr.Video()
|
|
with gr.Accordion("Advanced options", open=False):
|
|
seed = gr.Slider(
|
|
label="Seed",
|
|
value=42,
|
|
randomize=True,
|
|
minimum=0,
|
|
maximum=max_64_bit_int,
|
|
step=1,
|
|
)
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
motion_bucket_id = gr.Slider(
|
|
label="Motion bucket id",
|
|
info="Controls how much motion to add/remove from the image",
|
|
value=127,
|
|
minimum=1,
|
|
maximum=255,
|
|
)
|
|
fps_id = gr.Slider(
|
|
label="Frames per second",
|
|
info="The length of your video in seconds will be 25/fps",
|
|
value=6,
|
|
minimum=5,
|
|
maximum=30,
|
|
)
|
|
|
|
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
|
generate_btn.click(
|
|
fn=sample,
|
|
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
|
outputs=[video, seed],
|
|
api_name="video",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.queue(max_size=20)
|
|
demo.launch(share=True)
|