Gradio updates

This commit is contained in:
Vikram Voleti
2024-03-19 04:53:29 +00:00
parent bdbae9948f
commit 97db8edf64
4 changed files with 656 additions and 5 deletions

View File

@@ -2,6 +2,7 @@ import os
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
def generate_dynamic_cycle_xy_values(
@@ -74,8 +75,9 @@ def gen_dynamic_loop(length=21, elev_deg=0):
return np.roll(azim_rad, -1), np.roll(elev_rad, -1)
def plot_3D(azim, polar, save_path, dynamic=True):
os.makedirs(os.path.dirname(save_path), exist_ok=True)
def plot_3D(azim, polar, save_path=None, dynamic=True):
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
elev = np.deg2rad(90) - polar
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(projection="3d")
@@ -98,7 +100,20 @@ def plot_3D(azim, polar, save_path, dynamic=True):
ax.scatter(xs[i + 1], ys[i + 1], zs[i + 1], s=100, color=col[i + 1])
ax.scatter(xs[:1], ys[:1], zs[:1], s=120, facecolors="none", edgecolors="k")
ax.scatter(xs[-1:], ys[-1:], zs[-1:], s=120, facecolors="none", edgecolors="k")
ax.view_init(elev=30, azim=-20, roll=0)
plt.savefig(save_path, bbox_inches="tight")
ax.view_init(elev=40, azim=-20, roll=0)
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.zaxis.set_ticklabels([])
if save_path is None:
fig.canvas.draw()
lst = list(fig.canvas.get_width_height())
lst.append(3)
image = Image.fromarray(
np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(lst)
)
else:
plt.savefig(save_path, bbox_inches="tight")
plt.clf()
plt.close()
if save_path is None:
return image

View File

@@ -0,0 +1,341 @@
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
import os
import sys
sys.path.append(os.path.dirname(__file__))
import random
from glob import glob
from pathlib import Path
from typing import List, Optional
import cv2
import gradio as gr
import imageio
import numpy as np
import torch
from einops import rearrange, repeat
from huggingface_hub import hf_hub_download
from PIL import Image
from rembg import remove
from scripts.demo.sv3d_helpers import gen_dynamic_loop, plot_3D
from scripts.sampling.simple_video_sample import (
get_batch,
get_unique_embedder_keys_from_conditioner,
load_model,
)
from sgm.inference.helpers import embed_watermark
from torchvision.transforms import ToTensor
version = "sv3d_p" # replace with 'sv3d_p' or 'sv3d_u' for other models
# Define the repo, local directory and filename
repo_id = "stabilityai/sv3d"
filename = f"{version}.safetensors" # replace with "sv3d_u.safetensors" or "sv3d_p.safetensors"
local_dir = "checkpoints"
local_ckpt_path = os.path.join(local_dir, filename)
# Check if the file already exists
if not os.path.exists(local_ckpt_path):
# If the file doesn't exist, download it
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
print("File downloaded.")
else:
print("File already exists. No need to download.")
device = "cuda"
max_64_bit_int = 2**63 - 1
num_frames = 21
num_steps = 50
model_config = f"scripts/sampling/configs/{version}.yaml"
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
)
def gen_orbit(orbit, elev_deg):
global polars_rad
global azimuths_rad
if orbit == "dynamic":
azim_rad, elev_rad = gen_dynamic_loop(length=num_frames, elev_deg=elev_deg)
polars_rad = np.deg2rad(90) - elev_rad
azimuths_rad = azim_rad
else:
polars_rad = np.array([np.deg2rad(90 - elev_deg)] * num_frames)
azimuths_rad = np.linspace(0, 2 * np.pi, num_frames + 1)[1:]
plot = plot_3D(
azim=azimuths_rad,
polar=polars_rad,
save_path=None,
dynamic=(orbit == "dynamic"),
)
return plot
def sample(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
seed: Optional[int] = None,
randomize_seed: bool = True,
orbit: str = "same elevation",
elev_deg: float = 10.0,
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = None,
image_frame_ratio: Optional[float] = None,
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
torch.manual_seed(seed)
path = Path(input_path)
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_img_path in all_img_paths:
image = Image.open(input_img_path)
if image.mode == "RGBA":
pass
else:
# remove bg
image.thumbnail([768, 768], Image.Resampling.LANCZOS)
image = remove(image.convert("RGBA"), alpha_matting=True)
# resize object in frame
image_arr = np.array(image)
in_w, in_h = image_arr.shape[:2]
ret, mask = cv2.threshold(
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
side_len = (
int(max_size / image_frame_ratio) if image_frame_ratio is not None else in_w
)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h,
center - w // 2 : center - w // 2 + w,
] = image_arr[y : y + h, x : x + w]
# resize frame to 576x576
rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS)
# white bg
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
image = ToTensor()(input_image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 576) and "sv3d" in version:
print(
"WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576."
)
cond_aug = 1e-5
value_dict = {}
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
value_dict["polars_rad"] = polars_rad
value_dict["azimuths_rad"] = azimuths_rad
output_folder = output_folder or f"outputs/gradio/{version}"
cond_aug = 1e-5
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
imageio.imwrite(
os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image
)
samples = embed_watermark(samples)
samples = filter(samples)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
imageio.mimwrite(video_path, vid)
return video_path, seed
def resize_image(image_path, output_size=(576, 576)):
image = Image.open(image_path)
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks() as demo:
gr.Markdown(
"""# Demo for SV3D_p from Stability AI ([model](https://huggingface.co/stabilityai/sv3d), [news](https://stability.ai/news/introducing-stable-video-3d))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/sv3d/blob/main/LICENSE)): generate 21 frames orbital video from a single image, at variable elevation and azimuth.
Generation takes ~40s (for 50 steps) in an A100.
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="filepath")
generate_btn = gr.Button("Generate")
video = gr.Video()
with gr.Row():
with gr.Column():
elev_deg = gr.Slider(
label="Elevation (in degrees)",
info="Elevation of the camera in the conditioning image, in degrees.",
value=10.0,
minimum=-10,
maximum=30,
)
orbit = gr.Dropdown(
["same elevation", "dynamic"],
label="Orbit",
info="Choose with orbit to generate",
)
plot_image = gr.Image()
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
value=23,
randomize=True,
minimum=0,
maximum=max_64_bit_int,
step=1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
decoding_t = gr.Slider(
label="Decode n frames at a time",
info="Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.",
value=7,
minimum=1,
maximum=14,
)
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
elev_deg.change(gen_orbit, [orbit, elev_deg], plot_image)
orbit.change(gen_orbit, [orbit, elev_deg], plot_image)
# seed.change(gen_orbit, [orbit, elev_deg], plot_image)
generate_btn.click(
fn=sample,
inputs=[image, seed, randomize_seed, decoding_t],
outputs=[video, seed],
api_name="video",
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(share=True)

View File

@@ -0,0 +1,295 @@
# Adding this at the very top of app.py to make 'generative-models' directory discoverable
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
import random
from glob import glob
from pathlib import Path
from typing import Optional
import cv2
import gradio as gr
import imageio
import numpy as np
import torch
from einops import rearrange, repeat
from huggingface_hub import hf_hub_download
from PIL import Image
from rembg import remove
from scripts.sampling.simple_video_sample import (
get_batch,
get_unique_embedder_keys_from_conditioner,
load_model,
)
from sgm.inference.helpers import embed_watermark
from torchvision.transforms import ToTensor
version = "sv3d_u" # replace with 'sv3d_p' or 'sv3d_u' for other models
# Define the repo, local directory and filename
repo_id = "stabilityai/sv3d"
filename = f"{version}.safetensors" # replace with "sv3d_u.safetensors" or "sv3d_p.safetensors"
local_dir = "checkpoints"
local_ckpt_path = os.path.join(local_dir, filename)
# Check if the file already exists
if not os.path.exists(local_ckpt_path):
# If the file doesn't exist, download it
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
print("File downloaded.")
else:
print("File already exists. No need to download.")
device = "cuda"
max_64_bit_int = 2**63 - 1
num_frames = 21
num_steps = 50
model_config = f"scripts/sampling/configs/{version}.yaml"
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
)
def sample(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
seed: Optional[int] = None,
randomize_seed: bool = True,
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = None,
image_frame_ratio: Optional[float] = None,
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
torch.manual_seed(seed)
path = Path(input_path)
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_img_path in all_img_paths:
image = Image.open(input_img_path)
if image.mode == "RGBA":
pass
else:
# remove bg
image.thumbnail([768, 768], Image.Resampling.LANCZOS)
image = remove(image.convert("RGBA"), alpha_matting=True)
# resize object in frame
image_arr = np.array(image)
in_w, in_h = image_arr.shape[:2]
ret, mask = cv2.threshold(
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
side_len = (
int(max_size / image_frame_ratio) if image_frame_ratio is not None else in_w
)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h,
center - w // 2 : center - w // 2 + w,
] = image_arr[y : y + h, x : x + w]
# resize frame to 576x576
rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS)
# white bg
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
image = ToTensor()(input_image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 576) and "sv3d" in version:
print(
"WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576."
)
cond_aug = 1e-5
value_dict = {}
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = image
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
value_dict["cond_aug"] = cond_aug
output_folder = output_folder or f"outputs/gradio/{version}"
cond_aug = 1e-5
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
imageio.imwrite(
os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image
)
samples = embed_watermark(samples)
samples = filter(samples)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
imageio.mimwrite(video_path, vid)
return video_path, seed
def resize_image(image_path, output_size=(576, 576)):
image = Image.open(image_path)
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks() as demo:
gr.Markdown(
"""# Demo for SV3D_u from Stability AI ([model](https://huggingface.co/stabilityai/sv3d), [news](https://stability.ai/news/introducing-stable-video-3d))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/sv3d/blob/main/LICENSE)): generate 21 frames orbital video from a single image, at the same elevation.
Generation takes ~40s (for 50 steps) in an A100.
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="filepath")
generate_btn = gr.Button("Generate")
video = gr.Video()
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
value=23,
randomize=True,
minimum=0,
maximum=max_64_bit_int,
step=1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
decoding_t = gr.Slider(
label="Decode n frames at a time",
info="Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.",
value=7,
minimum=1,
maximum=14,
)
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
generate_btn.click(
fn=sample,
inputs=[image, seed, randomize_seed, decoding_t],
outputs=[video, seed],
api_name="video",
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(share=True)

View File

@@ -100,7 +100,7 @@ def sample(
device,
num_frames,
num_steps,
verbose,
verbose=verbose,
)
torch.manual_seed(seed)