mirror of
https://github.com/Stability-AI/generative-models.git
synced 2026-02-03 04:44:27 +01:00
Merge branch 'main' of https://github.com/Stability-AI/generative-models into main
This commit is contained in:
@@ -4,6 +4,9 @@
|
||||
|
||||
## News
|
||||
|
||||
**July 4, 2023**
|
||||
- A technical report on SDXL is now available [here](assets/sdxl_report.pdf).
|
||||
|
||||
**June 22, 2023**
|
||||
|
||||
|
||||
|
||||
BIN
assets/sdxl_report.pdf
Normal file
BIN
assets/sdxl_report.pdf
Normal file
Binary file not shown.
@@ -83,7 +83,7 @@ class GetWatermarkMatch:
|
||||
def __call__(self, x: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Detects the number of matching bits the predefined watermark with one
|
||||
or multiple images. Images should be in cv2 format, e.g. h x w x c.
|
||||
or multiple images. Images should be in cv2 format, e.g. h x w x c BGR.
|
||||
|
||||
Args:
|
||||
x: ([B], h w, c) in range [0, 255]
|
||||
@@ -94,7 +94,6 @@ class GetWatermarkMatch:
|
||||
squeeze = len(x.shape) == 3
|
||||
if squeeze:
|
||||
x = x[None, ...]
|
||||
x = np.flip(x, axis=-1)
|
||||
|
||||
bs = x.shape[0]
|
||||
detected = np.empty((bs, self.num_bits), dtype=bool)
|
||||
|
||||
@@ -311,8 +311,9 @@ if __name__ == "__main__":
|
||||
samples, samples_z = out
|
||||
else:
|
||||
samples = out
|
||||
samples_z = None
|
||||
|
||||
if add_pipeline:
|
||||
if add_pipeline and samples_z is not None:
|
||||
st.write("**Running Refinement Stage**")
|
||||
samples = apply_refiner(
|
||||
samples_z,
|
||||
|
||||
@@ -43,19 +43,19 @@ class WatermarkEmbedder:
|
||||
Returns:
|
||||
same as input but watermarked
|
||||
"""
|
||||
# watermarking libary expects input as cv2 format
|
||||
# watermarking libary expects input as cv2 BGR format
|
||||
squeeze = len(image.shape) == 4
|
||||
if squeeze:
|
||||
image = image[None, ...]
|
||||
n = image.shape[0]
|
||||
image_np = rearrange(
|
||||
(255 * image).detach().cpu(), "n b c h w -> (n b) h w c"
|
||||
).numpy()
|
||||
).numpy()[:, :, :, ::-1]
|
||||
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
|
||||
for k in range(image_np.shape[0]):
|
||||
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
|
||||
image = torch.from_numpy(
|
||||
rearrange(image_np, "(n b) h w c -> n b c h w", n=n)
|
||||
rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)
|
||||
).to(image.device)
|
||||
image = torch.clamp(image / 255, min=0.0, max=1.0)
|
||||
if squeeze:
|
||||
|
||||
Reference in New Issue
Block a user