Files
dev-gpt/micro_chain.py
2023-03-22 18:16:57 +01:00

107 lines
4.4 KiB
Python

import random
from main import extract_content_from_result, write_config_yml
from src import gpt, jina_cloud
from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \
chain_of_thought_optimization, requirements_file_task, docker_file_task
from src.utils.io import recreate_folder, persist_file
from src.utils.string_tools import print_colored
def wrap_content_in_code_block(executor_content, file_name, tag):
return f'**{file_name}**\n```{tag}\n{executor_content}\n```\n\n'
def main(
executor_description,
input_modality,
# input_doc_field,
output_modality,
# output_doc_field,
test_scenario,
do_validation=True
):
input_doc_field = 'text' if input_modality == 'text' else 'blob'
output_doc_field = 'text' if output_modality == 'text' else 'blob'
# random integer at the end of the executor name to avoid name clashes
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
recreate_folder('executor')
recreate_folder('flow')
print_colored('', '############# Executor #############', 'red')
user_query = (
general_guidelines()
+ executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
output_modality, output_doc_field)
+ chain_of_thought_creation()
)
conversation = gpt.Conversation()
conversation.query(user_query)
executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
persist_file(executor_content, 'executor.py')
print_colored('', '############# Test Executor #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ test_executor_file_task(executor_name, test_scenario)
)
conversation = gpt.Conversation()
conversation.query(user_query)
test_executor_content_raw = conversation.query(
chain_of_thought_optimization('python', 'test_executor.py')
+ "Don't add any additional tests. "
)
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
persist_file(test_executor_content, 'test_executor.py')
print_colored('', '############# Requirements #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
+ requirements_file_task()
)
conversation = gpt.Conversation()
conversation.query(user_query)
requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt'))
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
persist_file(requirements_content, 'requirements.txt')
print_colored('', '############# Dockerfile #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
+ docker_file_task()
)
conversation = gpt.Conversation()
conversation.query(user_query)
dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
persist_file(dockerfile_content, 'Dockerfile')
write_config_yml(executor_name, 'executor')
jina_cloud.push_executor('executor')
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
# create playgorund and client.py
if __name__ == '__main__':
######## Level 1 task #########
main(
executor_description="OCR detector",
input_modality='image',
# input_doc_field='blob',
output_modality='text',
# output_doc_field='text',
test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
do_validation=False
)