import random from main import extract_content_from_result, write_config_yml from src import gpt, jina_cloud from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \ chain_of_thought_optimization, requirements_file_task, docker_file_task from src.utils.io import recreate_folder, persist_file from src.utils.string_tools import print_colored def wrap_content_in_code_block(executor_content, file_name, tag): return f'**{file_name}**\n```{tag}\n{executor_content}\n```\n\n' def main( executor_description, input_modality, # input_doc_field, output_modality, # output_doc_field, test_scenario, do_validation=True ): input_doc_field = 'text' if input_modality == 'text' else 'blob' output_doc_field = 'text' if output_modality == 'text' else 'blob' # random integer at the end of the executor name to avoid name clashes executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}' recreate_folder('executor') recreate_folder('flow') print_colored('', '############# Executor #############', 'red') user_query = ( general_guidelines() + executor_file_task(executor_name, executor_description, input_modality, input_doc_field, output_modality, output_doc_field) + chain_of_thought_creation() ) conversation = gpt.Conversation() conversation.query(user_query) executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py')) executor_content = extract_content_from_result(executor_content_raw, 'executor.py') persist_file(executor_content, 'executor.py') print_colored('', '############# Test Executor #############', 'red') user_query = ( general_guidelines() + wrap_content_in_code_block(executor_content, 'executor.py', 'python') + test_executor_file_task(executor_name, test_scenario) ) conversation = gpt.Conversation() conversation.query(user_query) test_executor_content_raw = conversation.query( chain_of_thought_optimization('python', 'test_executor.py') + "Don't add any additional tests. " ) test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py') persist_file(test_executor_content, 'test_executor.py') print_colored('', '############# Requirements #############', 'red') user_query = ( general_guidelines() + wrap_content_in_code_block(executor_content, 'executor.py', 'python') + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python') + requirements_file_task() ) conversation = gpt.Conversation() conversation.query(user_query) requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt')) requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt') persist_file(requirements_content, 'requirements.txt') print_colored('', '############# Dockerfile #############', 'red') user_query = ( general_guidelines() + wrap_content_in_code_block(executor_content, 'executor.py', 'python') + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python') + wrap_content_in_code_block(requirements_content, 'requirements.txt', '') + docker_file_task() ) conversation = gpt.Conversation() conversation.query(user_query) dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile')) dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile') persist_file(dockerfile_content, 'Dockerfile') write_config_yml(executor_name, 'executor') jina_cloud.push_executor('executor') host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow') # create playgorund and client.py if __name__ == '__main__': ######## Level 1 task ######### main( executor_description="OCR detector", input_modality='image', # input_doc_field='blob', output_modality='text', # output_doc_field='text', test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"', do_validation=False )