mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 23:24:20 +01:00
feat: error feedback
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1 +1 @@
|
||||
/executor/
|
||||
/executor_level2/
|
||||
|
||||
44
main.py
44
main.py
@@ -12,13 +12,16 @@ import re
|
||||
# from src.utils.string_tools import find_differences
|
||||
#
|
||||
#
|
||||
from src.constants import FILE_AND_TAG_PAIRS
|
||||
|
||||
|
||||
def extract_content_from_result(plain_text, file_name):
|
||||
pattern = fr"^\*\*{file_name}\*\*\n```(?:\w+\n)?([\s\S]*?)```"
|
||||
match = re.search(pattern, plain_text, re.MULTILINE)
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
raise ValueError(f'Could not find {file_name} in result')
|
||||
return ''
|
||||
#
|
||||
#
|
||||
# def extract_and_write(plain_text, dest_folder):
|
||||
@@ -41,17 +44,17 @@ metas:
|
||||
f.write(config_content)
|
||||
#
|
||||
#
|
||||
# def get_all_executor_files_with_content(folder_path):
|
||||
# file_name_to_content = {}
|
||||
# for filename in os.listdir(folder_path):
|
||||
# file_path = os.path.join(folder_path, filename)
|
||||
#
|
||||
# if os.path.isfile(file_path):
|
||||
# with open(file_path, 'r', encoding='utf-8') as file:
|
||||
# content = file.read()
|
||||
# file_name_to_content[filename] = content
|
||||
#
|
||||
# return file_name_to_content
|
||||
def get_all_executor_files_with_content(folder_path):
|
||||
file_name_to_content = {}
|
||||
for filename in os.listdir(folder_path):
|
||||
file_path = os.path.join(folder_path, filename)
|
||||
|
||||
if os.path.isfile(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
content = file.read()
|
||||
file_name_to_content[filename] = content
|
||||
|
||||
return file_name_to_content
|
||||
#
|
||||
#
|
||||
#
|
||||
@@ -104,14 +107,15 @@ metas:
|
||||
# print('DIFFERENCES:', find_differences(all_executor_files_string, all_executor_files_string_improved))
|
||||
# return all_executor_files_string_improved
|
||||
#
|
||||
# def files_to_string(file_name_to_content):
|
||||
# all_executor_files_string = ''
|
||||
# for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
# all_executor_files_string += f'**{file_name}**\n'
|
||||
# all_executor_files_string += f'```{tag}\n'
|
||||
# all_executor_files_string += file_name_to_content[file_name]
|
||||
# all_executor_files_string += '\n```\n\n'
|
||||
# return all_executor_files_string
|
||||
def files_to_string(file_name_to_content):
|
||||
all_executor_files_string = ''
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
if file_name in file_name_to_content:
|
||||
all_executor_files_string += f'**{file_name}**\n'
|
||||
all_executor_files_string += f'```{tag}\n'
|
||||
all_executor_files_string += file_name_to_content[file_name]
|
||||
all_executor_files_string += '\n```\n\n'
|
||||
return all_executor_files_string
|
||||
#
|
||||
#
|
||||
# def main(
|
||||
|
||||
185
micro_chain.py
185
micro_chain.py
@@ -1,7 +1,10 @@
|
||||
import random
|
||||
|
||||
from main import extract_content_from_result, write_config_yml
|
||||
from main import extract_content_from_result, write_config_yml, get_all_executor_files_with_content, files_to_string
|
||||
|
||||
from src import gpt, jina_cloud
|
||||
from src.constants import FILE_AND_TAG_PAIRS
|
||||
from src.jina_cloud import build_docker
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \
|
||||
chain_of_thought_optimization, requirements_file_task, docker_file_task
|
||||
from src.utils.io import recreate_folder, persist_file
|
||||
@@ -21,86 +24,132 @@ def main(
|
||||
test_scenario,
|
||||
do_validation=True
|
||||
):
|
||||
input_doc_field = 'text' if input_modality == 'text' else 'blob'
|
||||
output_doc_field = 'text' if output_modality == 'text' else 'blob'
|
||||
# random integer at the end of the executor name to avoid name clashes
|
||||
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
||||
recreate_folder('executor')
|
||||
recreate_folder('flow')
|
||||
# input_doc_field = 'text' if input_modality == 'text' else 'blob'
|
||||
# output_doc_field = 'text' if output_modality == 'text' else 'blob'
|
||||
# # random integer at the end of the executor name to avoid name clashes
|
||||
# executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
||||
# recreate_folder('executor')
|
||||
# EXECUTOR_FOLDER_v1 = 'executor/v1'
|
||||
# recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
# recreate_folder('flow')
|
||||
#
|
||||
# print_colored('', '############# Executor #############', 'red')
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
# output_modality, output_doc_field)
|
||||
# + chain_of_thought_creation()
|
||||
# )
|
||||
# conversation = gpt.Conversation()
|
||||
# conversation.query(user_query)
|
||||
# executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
|
||||
# executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
|
||||
# persist_file(executor_content, 'executor.py')
|
||||
#
|
||||
# print_colored('', '############# Test Executor #############', 'red')
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
# + test_executor_file_task(executor_name, test_scenario)
|
||||
# )
|
||||
# conversation = gpt.Conversation()
|
||||
# conversation.query(user_query)
|
||||
# test_executor_content_raw = conversation.query(
|
||||
# chain_of_thought_optimization('python', 'test_executor.py')
|
||||
# + "Don't add any additional tests. "
|
||||
# )
|
||||
# test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
|
||||
# persist_file(test_executor_content, 'test_executor.py')
|
||||
#
|
||||
# print_colored('', '############# Requirements #############', 'red')
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
# + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
# + requirements_file_task()
|
||||
# )
|
||||
# conversation = gpt.Conversation()
|
||||
# conversation.query(user_query)
|
||||
# requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt') + "Keep the same version of jina ")
|
||||
#
|
||||
# requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
|
||||
# persist_file(requirements_content, 'requirements.txt')
|
||||
#
|
||||
# print_colored('', '############# Dockerfile #############', 'red')
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
# + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
# + wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
|
||||
# + docker_file_task()
|
||||
# )
|
||||
# conversation = gpt.Conversation()
|
||||
# conversation.query(user_query)
|
||||
# dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
# dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
|
||||
# persist_file(dockerfile_content, 'Dockerfile')
|
||||
#
|
||||
# write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
|
||||
print_colored('', '############# Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
output_modality, output_doc_field)
|
||||
+ chain_of_thought_creation()
|
||||
)
|
||||
for i in range(1, 20):
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
|
||||
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
|
||||
persist_file(executor_content, 'executor.py')
|
||||
|
||||
print_colored('', '############# Test Executor #############', 'red')
|
||||
error = build_docker(f'executor_level2/v{i}')
|
||||
if error:
|
||||
recreate_folder(f'executor_level2/v{i + 1}')
|
||||
file_name_to_content = get_all_executor_files_with_content(f'executor_level2/v{i}')
|
||||
all_files_string = files_to_string(file_name_to_content)
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ test_executor_file_task(executor_name, test_scenario)
|
||||
'Here are all the files I use:\n'
|
||||
+ all_files_string
|
||||
+ 'I got the following error:\n'
|
||||
+ error
|
||||
+ 'Think quickly about possible reasons. '
|
||||
'Then output the files that need change. '
|
||||
"Don't output files that don't need change. "
|
||||
"If you output a file, then write the complete file. "
|
||||
"Use the exact same syntax to wrap the code:\n"
|
||||
f"**...**\n"
|
||||
f"```...\n"
|
||||
f"...code...\n"
|
||||
f"```\n\n"
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
test_executor_content_raw = conversation.query(
|
||||
chain_of_thought_optimization('python', 'test_executor.py')
|
||||
+ "Don't add any additional tests. "
|
||||
)
|
||||
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
|
||||
persist_file(test_executor_content, 'test_executor.py')
|
||||
returned_files_raw = conversation.query(user_query)
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
updated_file = extract_content_from_result(returned_files_raw, file_name)
|
||||
if updated_file:
|
||||
file_name_to_content[file_name] = updated_file
|
||||
|
||||
print_colored('', '############# Requirements #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ requirements_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt'))
|
||||
for file_name, content in file_name_to_content.items():
|
||||
persist_file(content, f'executor_level2/v{i + 1}/{file_name}')
|
||||
else:
|
||||
break
|
||||
|
||||
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
|
||||
persist_file(requirements_content, 'requirements.txt')
|
||||
|
||||
print_colored('', '############# Dockerfile #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
|
||||
+ docker_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
|
||||
persist_file(dockerfile_content, 'Dockerfile')
|
||||
|
||||
write_config_yml(executor_name, 'executor')
|
||||
|
||||
jina_cloud.push_executor('executor')
|
||||
|
||||
error = jina_cloud.push_executor('executor_level2')
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
|
||||
# create playgorund and client.py
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
######## Level 1 task #########
|
||||
# ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# # input_doc_field='blob',
|
||||
# output_modality='text',
|
||||
# # output_doc_field='text',
|
||||
# test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
|
||||
# do_validation=False
|
||||
# )
|
||||
|
||||
######### Level 2 task #########
|
||||
main(
|
||||
executor_description="OCR detector",
|
||||
input_modality='image',
|
||||
# input_doc_field='blob',
|
||||
output_modality='text',
|
||||
# output_doc_field='text',
|
||||
test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
|
||||
executor_description="The executor takes 3D objects in obj format as input "
|
||||
"and outputs a 2D image projection of that object where the full object is shown. ",
|
||||
input_modality='3d',
|
||||
output_modality='image',
|
||||
test_scenario='Test that 3d object from https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj '
|
||||
'is put in and out comes a 2d rendering of it',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
@@ -30,7 +30,7 @@ def get_response(prompt_list: List[Tuple[str, str]]):
|
||||
try:
|
||||
response_generator = openai.ChatCompletion.create(
|
||||
temperature=0,
|
||||
max_tokens=4_000,
|
||||
max_tokens=2_000,
|
||||
model="gpt-4",
|
||||
stream=True,
|
||||
messages=[
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import os
|
||||
from multiprocessing.connection import Client
|
||||
import subprocess
|
||||
import re
|
||||
|
||||
import hubble
|
||||
from jcloud.flow import CloudFlow
|
||||
@@ -79,3 +81,36 @@ def update_client_line_in_file(file_path, host):
|
||||
file.write(replaced_content)
|
||||
|
||||
|
||||
def build_docker(path):
|
||||
def process_error_message(error_message):
|
||||
lines = error_message.split('\n')
|
||||
relevant_lines = []
|
||||
|
||||
pattern = re.compile(r"^#\d+ \[\d+/\d+\]") # Pattern to match lines like "#11 [7/8]"
|
||||
last_matching_line_index = None
|
||||
|
||||
for index, line in enumerate(lines):
|
||||
if pattern.match(line):
|
||||
last_matching_line_index = index
|
||||
|
||||
if last_matching_line_index is not None:
|
||||
relevant_lines = lines[last_matching_line_index:]
|
||||
|
||||
return '\n'.join(relevant_lines)
|
||||
|
||||
# The command to build the Docker image
|
||||
cmd = f"docker build -t micromagic {path}"
|
||||
|
||||
# Run the command and capture the output
|
||||
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
||||
stdout, stderr = process.communicate()
|
||||
|
||||
# Check if there was an error
|
||||
if process.returncode != 0:
|
||||
error_message = stderr.decode("utf-8")
|
||||
relevant_error_message = process_error_message(error_message)
|
||||
return relevant_error_message
|
||||
else:
|
||||
print("Docker build completed successfully.")
|
||||
return ''
|
||||
|
||||
|
||||
@@ -36,6 +36,8 @@ It gets a DocumentArray as input where each document has the input modality '{in
|
||||
It returns a DocumentArray as output where each document has the output modality '{output_modality}' that is stored in document.{output_doc_field}.
|
||||
Have in mind that d.uri is never a path to a local file. It is always a url.
|
||||
The executor is not allowed to use the GPU.
|
||||
The executor is not allowed to access a database.
|
||||
The executor is not allowed to access a display.
|
||||
The executor is not allowed to access external apis.
|
||||
''',
|
||||
EXECUTOR_FILE_TAG,
|
||||
|
||||
@@ -10,7 +10,7 @@ def recreate_folder(folder_path):
|
||||
os.makedirs(folder_path)
|
||||
|
||||
def persist_file(file_content, file_name):
|
||||
with open(f'executor/{file_name}', 'w') as f:
|
||||
with open(f'{file_name}', 'w') as f:
|
||||
f.write(file_content)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user