mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 07:04:20 +01:00
199 lines
8.3 KiB
Python
199 lines
8.3 KiB
Python
# import importlib
|
|
import os
|
|
import re
|
|
#
|
|
# from src import gpt, jina_cloud
|
|
# from src.constants import FILE_AND_TAG_PAIRS, EXECUTOR_FOLDER_v1, EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME, STREAMLIT_FILE_NAME
|
|
# from src.jina_cloud import update_client_line_in_file
|
|
# from src.prompt_system import system_base_definition
|
|
# from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
|
# test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task, chain_of_thought_creation
|
|
# from src.utils.io import recreate_folder
|
|
# from src.utils.string_tools import find_differences
|
|
#
|
|
#
|
|
from src.constants import FILE_AND_TAG_PAIRS
|
|
|
|
|
|
def extract_content_from_result(plain_text, file_name):
|
|
pattern = fr"^\*\*{file_name}\*\*\n```(?:\w+\n)?([\s\S]*?)```"
|
|
match = re.search(pattern, plain_text, re.MULTILINE)
|
|
if match:
|
|
return match.group(1).strip()
|
|
else:
|
|
return ''
|
|
#
|
|
#
|
|
# def extract_and_write(plain_text, dest_folder):
|
|
# for file_name, tag in FILE_AND_TAG_PAIRS:
|
|
# clean = extract_content_from_result(plain_text, file_name)
|
|
# full_path = os.path.join(dest_folder, file_name)
|
|
# with open(full_path, 'w') as f:
|
|
# f.write(clean)
|
|
#
|
|
#
|
|
def write_config_yml(executor_name, dest_folder):
|
|
config_content = f'''
|
|
jtype: {executor_name}
|
|
py_modules:
|
|
- executor.py
|
|
metas:
|
|
name: {executor_name}
|
|
'''
|
|
with open(os.path.join(dest_folder, 'config.yml'), 'w') as f:
|
|
f.write(config_content)
|
|
#
|
|
#
|
|
def get_all_executor_files_with_content(folder_path):
|
|
file_name_to_content = {}
|
|
for filename in os.listdir(folder_path):
|
|
file_path = os.path.join(folder_path, filename)
|
|
|
|
if os.path.isfile(file_path):
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
content = file.read()
|
|
file_name_to_content[filename] = content
|
|
|
|
return file_name_to_content
|
|
#
|
|
#
|
|
#
|
|
#
|
|
# def build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
|
# output_doc_field, output_modality, test_in, test_out):
|
|
# system_definition = (
|
|
# system_base_definition
|
|
# + "The user is asking you to create an executor with all the necessary files "
|
|
# "and you write the complete code without leaving something out. "
|
|
# )
|
|
# user_query = (
|
|
# general_guidelines()
|
|
# + executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
|
# output_modality, output_doc_field)
|
|
# + test_executor_file_task(executor_name, test_in, test_out)
|
|
# + requirements_file_task()
|
|
# + docker_file_task()
|
|
# + client_file_task()
|
|
# + streamlit_file_task()
|
|
# + chain_of_thought_creation()
|
|
# )
|
|
# plain_text = gpt.get_response(system_definition, user_query)
|
|
# return plain_text
|
|
#
|
|
#
|
|
# def build_production_ready_implementation(all_executor_files_string):
|
|
# system_definition = (
|
|
# system_base_definition
|
|
# + f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
|
# f"The files may contain bugs. Fix all of them. "
|
|
#
|
|
# )
|
|
# user_query = (
|
|
# 'Make it production ready. '
|
|
# "Fix all files and add all missing code. "
|
|
# "Keep the same format as given to you. "
|
|
# f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
|
# f"Some imports might be missing. Make sure to add them. "
|
|
# f"Some libraries might be missing from the requirements.txt. Make sure to install them."
|
|
# f"Somthing might be wrong in the Dockerfile. For example, some libraries might be missing. Install them."
|
|
# f"Or not all files are copied to the right destination in the Dockerfile. Copy them to the correct destination. "
|
|
# "First write down an extensive list of obvious and non-obvious observations about the parts that could need an adjustment. Explain why. "
|
|
# "Think about if all the changes are required and finally decide for the changes you want to make. "
|
|
# f"Output all the files even the ones that did not change. "
|
|
# "Here are the files: \n\n"
|
|
# + all_executor_files_string
|
|
# )
|
|
# all_executor_files_string_improved = gpt.get_response(system_definition, user_query)
|
|
# print('DIFFERENCES:', find_differences(all_executor_files_string, all_executor_files_string_improved))
|
|
# return all_executor_files_string_improved
|
|
#
|
|
def files_to_string(file_name_to_content):
|
|
all_executor_files_string = ''
|
|
for file_name, tag in FILE_AND_TAG_PAIRS:
|
|
if file_name in file_name_to_content:
|
|
all_executor_files_string += f'**{file_name}**\n'
|
|
all_executor_files_string += f'```{tag}\n'
|
|
all_executor_files_string += file_name_to_content[file_name]
|
|
all_executor_files_string += '\n```\n\n'
|
|
return all_executor_files_string
|
|
#
|
|
#
|
|
# def main(
|
|
# executor_name,
|
|
# executor_description,
|
|
# input_modality,
|
|
# input_doc_field,
|
|
# output_modality,
|
|
# output_doc_field,
|
|
# test_in,
|
|
# test_out,
|
|
# do_validation=True
|
|
# ):
|
|
# recreate_folder(EXECUTOR_FOLDER_v1)
|
|
# recreate_folder(EXECUTOR_FOLDER_v2)
|
|
# recreate_folder('flow')
|
|
#
|
|
# all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
|
# output_doc_field, output_modality, test_in, test_out)
|
|
# extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
|
# write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
|
# file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
|
# all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
|
#
|
|
# all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
|
# extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
|
# write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
|
#
|
|
# jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
|
#
|
|
# host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
|
#
|
|
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
|
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
|
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
|
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
|
#
|
|
# if do_validation:
|
|
# importlib.import_module("executor_v1.client")
|
|
#
|
|
# return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
|
#
|
|
#
|
|
# if __name__ == '__main__':
|
|
# # ######### Level 2 task #########
|
|
# # main(
|
|
# # executor_name='My3DTo2DExecutor',
|
|
# # executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
|
# # input_modality='3d',
|
|
# # input_doc_field='blob',
|
|
# # output_modality='image',
|
|
# # output_doc_field='blob',
|
|
# # test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
|
# # test_out='the output should be exactly one image in png format',
|
|
# # do_validation=False
|
|
# # )
|
|
#
|
|
# ######## Level 1 task #########
|
|
# main(
|
|
# executor_name='MyCoolOcrExecutor',
|
|
# executor_description="OCR detector",
|
|
# input_modality='image',
|
|
# input_doc_field='uri',
|
|
# output_modality='text',
|
|
# output_doc_field='text',
|
|
# test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
|
# test_out='output should contain the string "Hello, world"',
|
|
# do_validation=False
|
|
# )
|
|
#
|
|
# # main(
|
|
# # executor_name='MySentimentAnalyzer',
|
|
# # executor_description="Sentiment analysis executor",
|
|
# # input_modality='text',
|
|
# # input_doc_field='text',
|
|
# # output_modality='sentiment',
|
|
# # output_doc_field='sentiment_label',
|
|
# # test_in='This is a fantastic product! I love it!',
|
|
# # test_out='positive',
|
|
# # do_validation=False
|
|
# # ) |