🪓 feat: sub task refinement

This commit is contained in:
Florian Hönicke
2023-05-09 16:17:34 +02:00
parent 1f86461e1c
commit afbafe164d
17 changed files with 685 additions and 468 deletions

View File

@@ -0,0 +1,437 @@
import json
import re
from typing import Generator
from dev_gpt.apis import gpt
from dev_gpt.apis.gpt import ask_gpt
from dev_gpt.options.generate.chains.condition import is_false, is_true
from dev_gpt.options.generate.chains.get_user_input_if_neede import get_user_input_if_needed
from dev_gpt.options.generate.parser import identity_parser, boolean_parser, json_parser
from dev_gpt.options.generate.pm.task_tree_schema import TaskTree
from dev_gpt.options.generate.ui import get_random_employee
class PM:
def refine_specification(self, microservice_description) -> TaskTree:
pm = get_random_employee('pm')
print(f'{pm.emoji}👋 Hi, I\'m {pm.name}, a PM at Jina AI. Gathering the requirements for our engineers.')
original_task = microservice_description
if not original_task:
microservice_description = self.get_user_input(pm, 'What should your microservice do?')
microservice_description, test_description = self.refine(microservice_description)
print(f'''
{pm.emoji} 👍 Great, I will handover the following requirements to our engineers:
Description of the microservice:
{microservice_description}
''')
return microservice_description, test_description
@staticmethod
def get_user_input(employee, prompt_to_user):
val = input(f'{employee.emoji}{prompt_to_user}\nyou: ')
print()
while not val:
val = input('you: ')
return val
def refine(self, microservice_description) -> TaskTree:
microservice_description, test_description = self.refine_description(microservice_description)
return microservice_description, test_description
# sub_task_tree = self.construct_sub_task_tree(microservice_description)
# return sub_task_tree
def get_nlp_fns(self, microservice_description):
return ask_gpt(
get_nlp_fns_prompt,
json_parser,
microservice_description=microservice_description
)
def construct_sub_task_tree(self, microservice_description):
"""
takes a microservice description and recursively constructs a tree of sub-tasks that need to be done to implement the microservice
"""
#
# nlp_fns = self.get_nlp_fns(
# microservice_description
# )
sub_task_tree_dict = ask_gpt(
construct_sub_task_tree_prompt, json_parser,
microservice_description=microservice_description,
# nlp_fns=nlp_fns
)
reflections = ask_gpt(
sub_task_tree_reflections_prompt, identity_parser,
microservice_description=microservice_description,
# nlp_fns=nlp_fns,
sub_task_tree=sub_task_tree_dict,
)
solutions = ask_gpt(
sub_task_tree_solutions_prompt, identity_parser,
# nlp_fns=nlp_fns,
microservice_description=microservice_description, sub_task_tree=sub_task_tree_dict,
reflections=reflections,
)
sub_task_tree_updated = ask_gpt(
sub_task_tree_update_prompt,
json_parser,
microservice_description=microservice_description,
# nlp_fns=nlp_fns,
sub_task_tree=sub_task_tree_dict, solutions=solutions
)
# for task_dict in self.iterate_over_sub_tasks(sub_task_tree_updated):
# task_dict.update(self.get_additional_task_info(task_dict['task']))
sub_task_tree = TaskTree.parse_obj(sub_task_tree_updated)
return sub_task_tree
def get_additional_task_info(self, sub_task_description):
additional_info_dict = self.get_additional_infos(
description=sub_task_description,
parameter={
'display_name': 'Task description',
'text': sub_task_description,
},
potentially_required_information_list=[
{
'field_name': 'api_key',
'display_name': 'valid API key',
}, {
'field_name': 'database_access',
'display_name': 'database access',
}, {
'field_name': 'documentation',
'display_name': 'documentation',
}, {
'field_name': 'example_api_call',
'display_name': 'curl command or sample code for api call',
},
],
)
return additional_info_dict
def get_additional_infos(self, description, parameter, potentially_required_information_list):
additional_info_dict = {}
for potentially_required_information in potentially_required_information_list:
is_task_requiring_information = ask_gpt(
is_task_requiring_information_template,
boolean_parser,
description=description,
description_title=parameter['display_name'],
description_text=parameter['text'],
potentially_required_information=potentially_required_information
)
if is_task_requiring_information:
generated_question = ask_gpt(
generate_question_for_required_information_template,
identity_parser,
description=description,
description_title=parameter['display_name'],
description_text=parameter['text'],
potentially_required_information=potentially_required_information
)
user_answer = input(generated_question)
additional_info_dict[potentially_required_information] = user_answer
return additional_info_dict
def iterate_over_sub_tasks(self, sub_task_tree_updated):
sub_tasks = sub_task_tree_updated['sub_tasks'] if 'sub_tasks' in sub_task_tree_updated else []
for sub_task in sub_tasks:
yield sub_task
yield from self.iterate_over_sub_tasks(sub_task)
def iterate_over_sub_tasks_pydantic(self, sub_task_tree: TaskTree) -> Generator[TaskTree, None, None]:
sub_tasks = sub_task_tree.sub_fns
for sub_task in sub_tasks:
yield sub_task
yield from self.iterate_over_sub_tasks_pydantic(sub_task)
def refine_description(self, microservice_description):
microservice_description = ask_gpt(better_description_prompt, identity_parser,
microservice_description=microservice_description)
request_schema = ask_gpt(generate_request_schema_prompt, identity_parser,
microservice_description=microservice_description)
response_schema = ask_gpt(generate_output_schema_prompt, identity_parser,
microservice_description=microservice_description, request_schema=request_schema)
# additional_specifications = self.add_additional_specifications(microservice_description, request_schema,
# response_schema)
microservice_description = ask_gpt(summarize_description_and_schemas_prompt, identity_parser,
microservice_description=microservice_description,
request_schema=request_schema,
response_schema=response_schema,
# additional_specifications=additional_specifications
)
while (user_feedback := self.get_user_feedback(microservice_description)):
microservice_description = ask_gpt(add_feedback_prompt, identity_parser,
microservice_description=microservice_description,
user_feedback=user_feedback)
test_description = ask_gpt(
generate_test_description_prompt,
identity_parser,
microservice_description=microservice_description,
request_schema=request_schema,
response_schema=response_schema
)
example_file_url = get_user_input_if_needed(
context={
'Microservice description': microservice_description,
'Request schema': request_schema,
'Response schema': response_schema,
},
conditions=[
is_true('Does request schema contain an example file url?'),
is_false('Is input url specified in the description?'),
],
question_gen_prompt_part="Generate a question that asks for an example file url.",
)
if example_file_url:
test_description += f'\nInput Example: {example_file_url}'
return microservice_description, test_description
def add_additional_specifications(self, microservice_description, request_schema, response_schema):
questions = ask_gpt(
ask_questions_prompt, identity_parser,
microservice_description=microservice_description,
request_schema=request_schema, response_schema=response_schema)
additional_specifications = ask_gpt(
answer_questions_prompt,
identity_parser,
microservice_description=microservice_description,
request_schema=request_schema,
response_schema=response_schema,
questions=questions
)
return additional_specifications
def get_user_feedback(self, microservice_description):
while True:
user_feedback = input(
f'I suggest that we implement the following microservice:\n{microservice_description}\nDo you agree? [y/n]')
if user_feedback.lower() in ['y', 'yes', 'yeah', 'yep', 'yup', 'sure', 'ok', 'okay']:
print('Great! I will hand this over to the developers!')
return None
elif user_feedback.lower() in ['n', 'no', 'nope', 'nah', 'nay', 'not']:
return input('What do you want to change?')
# return self.refine_user_feedback(microservice_description)
# def refine_user_feedback(self, microservice_description):
# while True:
# user_feedback = input('What do you want to change?')
# if ask_gpt(is_feedback_valuable_prompt, boolean_parser, user_feedback=user_feedback,
# microservice_description=microservice_description):
# return user_feedback
# else:
# print('Sorry, I can not handle this feedback. Please formulate it more precisely.')
client_description = '''\
Microservice description:
```
{microservice_description}
```'''
better_description_prompt = client_description + '''
Update the description of the Microservice to make it more precise without adding or removing information.
Note: the output must be a list of tasks the Microservice has to perform.
Example for the description: "return the average temperature of the 5 days weather forecast for a given location."
1. get the 5 days weather forcast from the https://openweathermap.org/ API
2. extract the temperature from the response
3. calculate the average temperature'''
# better_description_prompt = client_description + '''
# Update the description of the Microservice to make it more precise without adding or removing information.'''
generate_request_schema_prompt = client_description + '''
Generate the lean request json schema of the Microservice.
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
generate_output_schema_prompt = client_description + '''
request json schema:
```
{request_schema}
```
Generate the lean response json schema for the Microservice.
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
# If we want to activate this back, then it first needs to work. Currently, it outputs "no" for too many cases.
# is_feedback_valuable_prompt = client_description + '''
# User feedback:
# ```
# {user_feedback}
# ```
# Can this feedback be used to update the microservice description?
# Note: You must either answer "yes" or "no".
# Note: If the user does not want to provide feedback, then you must answer "no".'''
summarize_description_and_schemas_prompt = client_description + '''
Request json schema:
```
{request_schema}
```
Response json schema:
```
{response_schema}
```
Write an updated microservice description by incorporating information about the request and response parameters in a concise way without losing any information.
Note: You must not mention any details about algorithms or the technical implementation.
Note: You must not mention that there is a request and response JSON schema
Note: You must not use any formatting like triple backticks.'''
add_feedback_prompt = client_description + '''
User feedback:
```
{user_feedback}
```
Update the microservice description by incorporating the user feedback in a concise way without losing any information.'''
summarize_description_prompt = client_description + '''
Make the description more concise without losing any information.
Note: You must not mention any details about algorithms or the technical implementation.
Note: You must ignore facts that are not specified.
Note: You must ignore facts that are not relevant.
Note: You must ignore facts that are unknown.
Note: You must ignore facts that are unclear.'''
construct_sub_task_tree_prompt = client_description + '''
Recursively constructs a tree of functions that need to be implemented for the endpoint_function that retrieves a json string and returns a json string.
Example:
Input: "Input: list of integers, Output: Audio file of short story where each number is mentioned exactly once."
Output:
{{
"description": "Create an audio file containing a short story in which each integer from the provided list is seamlessly incorporated, ensuring that every integer is mentioned exactly once.",
"python_fn_signature": "def generate_integer_story_audio(numbers: List[int]) -> str:",
"sub_fns": [
{{
"description": "Generate sentence from integer.",
"python_fn_signature": "def generate_sentence_from_integer(number: int) -> int:",
"sub_fns": []
}},
{{
"description": "Convert the story into an audio file.",
"python_fn_signature": "def convert_story_to_audio(story: str) -> bytes:",
"sub_fns": []
}}
]
}}
Note: you must only output the json string - nothing else.
Note: you must pretty print the json string.'''
sub_task_tree_reflections_prompt = client_description + '''
Sub task tree:
```
{sub_task_tree}
```
Write down 3 arguments why the sub task tree might not perfectly represents the information mentioned in the microservice description. (5 words per argument)'''
sub_task_tree_solutions_prompt = client_description + '''
Sub task tree:
```
{sub_task_tree}
```
Reflections:
```
{reflections}
```
For each constructive criticism, write a solution (5 words) that address the criticism.'''
sub_task_tree_update_prompt = client_description + '''
Sub task tree:
```
{sub_task_tree}
```
Solutions:
```
{solutions}
```
Update the sub task tree by applying the solutions. (pretty print the json string)'''
ask_questions_prompt = client_description + '''
Request json schema:
```
{request_schema}
```
Response json schema:
```
{response_schema}
```
Ask the user up to 5 unique detailed questions (5 words) about the microservice description that are not yet answered.
'''
answer_questions_prompt = client_description + '''
Request json schema:
```
{request_schema}
```
Response json schema:
```
{response_schema}
```
Questions:
```
{questions}
```
Answer all questions where you can think of a plausible answer.
Note: You must not answer questions with something like "...is not specified", "I don't know" or "Unknown".
'''
is_task_requiring_information_template = '''\
{description_title}
```
{description_text}
```
Does the implementation of the {description_title} require information about "{potentially_required_information}"?
Note: You must either answer "yes" or "no".'''
generate_question_for_required_information_template = '''\
{description_title}
```
{description_text}
```
Generate a question that asks for the information "{potentially_required_information}" regarding "{description_title}".
Note: you must only output the question - nothing else.'''
get_nlp_fns_prompt = client_description + '''
Respond with all code parts that could be accomplished by GPT 3.
Example for "Take a video and/or a pdf as input, extract the subtitles from the video and the text from the pdf, \
summarize the extracted text and translate it to German":
```
[
"summarize the text",
"translate the text to German"
]
```
Note: only list code parts that could be expressed as a function that takes a string as input and returns a string as output.
Note: the output must be parsable by the python function json.loads.'''
generate_test_description_prompt = client_description + '''
Request json schema:
```
{request_schema}
```
Response json schema:
```
{response_schema}
```
Generate the description of the test scenario for the microservice.
Note: you must only output the test description - nothing else.
Note: you must not use any formatting like triple backticks.
Note: the test must insert data in defined in the request schema and validate that the type of the response is matching with the response schema.
'''
if __name__ == '__main__':
gpt_session = gpt.GPTSession('GPT-3.5-turbo')
first_question = 'Please specify your microservice.'
initial_description = 'mission generator'
# initial_description = 'convert png to svg'
# initial_description = "Input is a list of emails. For all the companies from the emails belonging to, it gets the company's logo. All logos are arranged in a collage and returned."
# initial_description = "Given an image, write a joke on it that is relevant to the image."
# initial_description = "This microservice receives an image as input and generates a joke based on its content and context. The input must be a binary string of the image. The output is an image with the generated joke overlaid on it."
initial_description = 'Build me a serch system for lottiefiles animations'
PM().refine(initial_description)
# PM(gpt_session).construct_sub_task_tree(initial_description)#.refine(initial_description)