mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-19 06:34:21 +01:00
🪓 feat: sub task refinement
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import json
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from time import sleep
|
||||
@@ -17,7 +18,7 @@ from urllib3.exceptions import InvalidChunkLength
|
||||
from dev_gpt.constants import PRICING_GPT4_PROMPT, PRICING_GPT4_GENERATION, PRICING_GPT3_5_TURBO_PROMPT, \
|
||||
PRICING_GPT3_5_TURBO_GENERATION, CHARS_PER_TOKEN
|
||||
from dev_gpt.options.generate.templates_system import template_system_message_base
|
||||
from dev_gpt.utils.string_tools import print_colored
|
||||
from dev_gpt.utils.string_tools import print_colored, get_template_parameters
|
||||
|
||||
|
||||
def configure_openai_api_key():
|
||||
@@ -32,8 +33,17 @@ If you have updated it already, please restart your terminal.
|
||||
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||
|
||||
class GPTSession:
|
||||
def __init__(self, task_description, model: str = 'gpt-4', ):
|
||||
self.task_description = task_description
|
||||
_instance = None
|
||||
_initialized = False
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
if cls._instance is None:
|
||||
cls._instance = super(GPTSession, cls).__new__(cls)
|
||||
return cls._instance
|
||||
|
||||
def __init__(self, model: str = 'gpt-4', ):
|
||||
if GPTSession._initialized:
|
||||
return
|
||||
if model == 'gpt-4' and self.is_gpt4_available():
|
||||
self.pricing_prompt = PRICING_GPT4_PROMPT
|
||||
self.pricing_generation = PRICING_GPT4_GENERATION
|
||||
@@ -46,6 +56,7 @@ class GPTSession:
|
||||
self.model_name = model
|
||||
self.chars_prompt_so_far = 0
|
||||
self.chars_generation_so_far = 0
|
||||
GPTSession._initialized = True
|
||||
|
||||
def get_conversation(self, messages: List[BaseMessage] = [], print_stream: bool = True, print_costs: bool = True):
|
||||
messages = deepcopy(messages)
|
||||
@@ -151,3 +162,22 @@ class _GPTConversation:
|
||||
test_description=test_description,
|
||||
)
|
||||
return SystemMessage(content=system_message)
|
||||
|
||||
|
||||
def ask_gpt(prompt_template, parser, **kwargs):
|
||||
template_parameters = get_template_parameters(prompt_template)
|
||||
if set(template_parameters) != set(kwargs.keys()):
|
||||
raise ValueError(f'Prompt template parameters {get_template_parameters(prompt_template)} do not match '
|
||||
f'provided parameters {kwargs.keys()}')
|
||||
for key, value in kwargs.items():
|
||||
if isinstance(value, dict):
|
||||
kwargs[key] = json.dumps(value, indent=4)
|
||||
prompt = prompt_template.format(**kwargs)
|
||||
conversation = GPTSession().get_conversation(
|
||||
[],
|
||||
print_stream=os.environ['VERBOSE'].lower() == 'true',
|
||||
print_costs=False
|
||||
)
|
||||
agent_response_raw = conversation.chat(prompt, role='user')
|
||||
agent_response = parser(agent_response_raw)
|
||||
return agent_response
|
||||
|
||||
@@ -35,6 +35,9 @@ def path_param(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
path = os.path.expanduser(kwargs['path'])
|
||||
path = os.path.abspath(path)
|
||||
if os.path.exists(path) and os.listdir(path):
|
||||
click.echo(f"Error: The path {path} you provided via --path is not empty. Please choose a directory that does not exist or is empty.")
|
||||
exit(1)
|
||||
kwargs['path'] = path
|
||||
return func(*args, **kwargs)
|
||||
return wrapper
|
||||
|
||||
22
dev_gpt/options/generate/chains/condition.py
Normal file
22
dev_gpt/options/generate/chains/condition.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from dev_gpt.apis.gpt import ask_gpt
|
||||
from dev_gpt.options.generate.chains.prompt_factory import context_to_string
|
||||
from dev_gpt.options.generate.parser import boolean_parser
|
||||
|
||||
|
||||
def is_true(question):
|
||||
def fn(context):
|
||||
prompt = question_prompt.format(
|
||||
question=question,
|
||||
context_string=context_to_string(context)
|
||||
)
|
||||
return ask_gpt(prompt, boolean_parser)
|
||||
return fn
|
||||
|
||||
def is_false(question):
|
||||
return lambda context: not is_true(question)(context)
|
||||
|
||||
question_prompt = '''\
|
||||
{context_string}
|
||||
{question}
|
||||
Note: You must answer "yes" or "no".
|
||||
'''
|
||||
21
dev_gpt/options/generate/chains/get_user_input_if_neede.py
Normal file
21
dev_gpt/options/generate/chains/get_user_input_if_neede.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from dev_gpt.apis.gpt import ask_gpt
|
||||
from dev_gpt.options.generate.chains.prompt_factory import context_to_string
|
||||
from dev_gpt.options.generate.parser import identity_parser
|
||||
|
||||
|
||||
def get_user_input_if_needed(context, conditions, question_gen_prompt_part):
|
||||
if all([c(context) for c in conditions]):
|
||||
return ask_gpt(
|
||||
generate_question_for_file_input_prompt,
|
||||
identity_parser,
|
||||
context_string=context_to_string(context),
|
||||
question_gen_prompt_part=question_gen_prompt_part
|
||||
)
|
||||
return None
|
||||
|
||||
generate_question_for_file_input_prompt = '''\
|
||||
{context_string}
|
||||
|
||||
{question_gen_prompt_part}
|
||||
Note: you must only output the question.
|
||||
'''
|
||||
17
dev_gpt/options/generate/chains/prompt_factory.py
Normal file
17
dev_gpt/options/generate/chains/prompt_factory.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import json
|
||||
|
||||
|
||||
def context_to_string(context):
|
||||
context_strings = []
|
||||
for k, v in context.items():
|
||||
if isinstance(v, dict):
|
||||
v = json.dumps(v, indent=4)
|
||||
v = v.replace('{', '{{').replace('}', '}}')
|
||||
context_strings.append(f'''\
|
||||
{k}:
|
||||
```
|
||||
{v}
|
||||
```
|
||||
'''
|
||||
)
|
||||
return '\n'.join(context_strings)
|
||||
@@ -7,28 +7,24 @@ from typing import Callable
|
||||
from typing import List, Text, Optional
|
||||
|
||||
from langchain import PromptTemplate
|
||||
from langchain.schema import SystemMessage, HumanMessage, AIMessage
|
||||
from pydantic.dataclasses import dataclass
|
||||
|
||||
from dev_gpt.apis import gpt
|
||||
from dev_gpt.apis.gpt import _GPTConversation
|
||||
from dev_gpt.apis.jina_cloud import process_error_message, push_executor, is_executor_in_hub
|
||||
from dev_gpt.apis.pypi import is_package_on_pypi, get_latest_package_version, clean_requirements_txt
|
||||
from dev_gpt.apis.pypi import is_package_on_pypi, clean_requirements_txt
|
||||
from dev_gpt.constants import FILE_AND_TAG_PAIRS, NUM_IMPLEMENTATION_STRATEGIES, MAX_DEBUGGING_ITERATIONS, \
|
||||
BLACKLISTED_PACKAGES, EXECUTOR_FILE_NAME, TEST_EXECUTOR_FILE_NAME, TEST_EXECUTOR_FILE_TAG, \
|
||||
REQUIREMENTS_FILE_NAME, REQUIREMENTS_FILE_TAG, DOCKER_FILE_NAME, IMPLEMENTATION_FILE_NAME, \
|
||||
IMPLEMENTATION_FILE_TAG, LANGUAGE_PACKAGES, UNNECESSARY_PACKAGES, DOCKER_BASE_IMAGE_VERSION
|
||||
from dev_gpt.options.generate.pm import PM
|
||||
from dev_gpt.options.generate.templates_system import system_task_iteration, system_task_introduction, system_test_iteration
|
||||
from dev_gpt.options.generate.pm.pm import PM
|
||||
from dev_gpt.options.generate.templates_user import template_generate_microservice_name, \
|
||||
template_generate_possible_packages, \
|
||||
template_solve_code_issue, \
|
||||
template_solve_pip_dependency_issue, template_is_dependency_issue, template_generate_playground, \
|
||||
template_generate_function, template_generate_test, template_generate_requirements, \
|
||||
template_chain_of_thought, template_summarize_error, \
|
||||
template_solve_apt_get_dependency_issue, template_pm_task_iteration, \
|
||||
template_pm_test_iteration
|
||||
from dev_gpt.options.generate.ui import get_random_employee
|
||||
template_solve_apt_get_dependency_issue
|
||||
from dev_gpt.utils.io import persist_file, get_all_microservice_files_with_content, get_microservice_path
|
||||
from dev_gpt.utils.string_tools import print_colored
|
||||
|
||||
@@ -41,7 +37,7 @@ class TaskSpecification:
|
||||
|
||||
class Generator:
|
||||
def __init__(self, task_description, path, model='gpt-4'):
|
||||
self.gpt_session = gpt.GPTSession(task_description, model=model)
|
||||
self.gpt_session = gpt.GPTSession(model=model)
|
||||
self.microservice_specification = TaskSpecification(task=task_description, test=None)
|
||||
self.microservice_root_path = path
|
||||
|
||||
@@ -376,9 +372,6 @@ pytest
|
||||
class MaxDebugTimeReachedException(BaseException):
|
||||
pass
|
||||
|
||||
class TaskRefinementException(BaseException):
|
||||
pass
|
||||
|
||||
def is_dependency_issue(self, summarized_error, dock_req_string: str, package_manager: str):
|
||||
# a few heuristics to quickly jump ahead
|
||||
if any([error_message in summarized_error for error_message in
|
||||
@@ -425,9 +418,10 @@ pytest
|
||||
packages_list = self.filter_packages_list(packages_list)
|
||||
packages_list = packages_list[:NUM_IMPLEMENTATION_STRATEGIES]
|
||||
return packages_list
|
||||
|
||||
# '/private/var/folders/f5/whmffl4d7q79s29jpyb6719m0000gn/T/pytest-of-florianhonicke/pytest-128/test_generation_level_0_mock_i0'
|
||||
# '/private/var/folders/f5/whmffl4d7q79s29jpyb6719m0000gn/T/pytest-of-florianhonicke/pytest-129/test_generation_level_0_mock_i0'
|
||||
def generate(self):
|
||||
self.refine_specification()
|
||||
self.microservice_specification.task, self.microservice_specification.test = PM().refine_specification(self.microservice_specification.task)
|
||||
os.makedirs(self.microservice_root_path)
|
||||
generated_name = self.generate_microservice_name(self.microservice_specification.task)
|
||||
microservice_name = f'{generated_name}{random.randint(0, 10_000_000)}'
|
||||
@@ -458,92 +452,6 @@ dev-gpt deploy --path {self.microservice_root_path}
|
||||
error_summary = conversation.chat(template_summarize_error.format(error=error))
|
||||
return error_summary
|
||||
|
||||
def refine_specification(self):
|
||||
pm = get_random_employee('pm')
|
||||
print(f'{pm.emoji}👋 Hi, I\'m {pm.name}, a PM at Jina AI. Gathering the requirements for our engineers.')
|
||||
original_task = self.microservice_specification.task
|
||||
while True:
|
||||
try:
|
||||
self.microservice_specification.test = None
|
||||
if not original_task:
|
||||
self.microservice_specification.task = self.get_user_input(pm, 'What should your microservice do?')
|
||||
|
||||
self.microservice_specification.task = PM(self.gpt_session).refine(self.microservice_specification.task)
|
||||
|
||||
self.refine_requirements(
|
||||
pm,
|
||||
[
|
||||
SystemMessage(content=system_task_introduction + system_test_iteration),
|
||||
],
|
||||
'test',
|
||||
'''Note that the test scenario must not contain information that was already mentioned in the microservice description.
|
||||
Note that you must not ask for information that were already mentioned before.''',
|
||||
template_pm_test_iteration,
|
||||
micro_service_initial_description=f'''Microservice original description:
|
||||
```
|
||||
{original_task}
|
||||
```
|
||||
Microservice refined description:
|
||||
```
|
||||
{self.microservice_specification.task}
|
||||
```
|
||||
''',
|
||||
)
|
||||
break
|
||||
except self.TaskRefinementException as e:
|
||||
|
||||
print_colored('', f'{pm.emoji} Could not refine your requirements. Please try again...', 'red')
|
||||
|
||||
print(f'''
|
||||
{pm.emoji} 👍 Great, I will handover the following requirements to our engineers:
|
||||
Description of the microservice:
|
||||
{self.microservice_specification.task}
|
||||
Test scenario:
|
||||
{self.microservice_specification.test}
|
||||
''')
|
||||
|
||||
def refine_requirements(self, pm, messages, refinement_type, custom_suffix, template_pm_iteration,
|
||||
micro_service_initial_description=None):
|
||||
user_input = self.microservice_specification.task
|
||||
num_parsing_tries = 0
|
||||
while True:
|
||||
conversation = self.gpt_session.get_conversation(messages,
|
||||
print_stream=os.environ['VERBOSE'].lower() == 'true',
|
||||
print_costs=False)
|
||||
agent_response_raw = conversation.chat(
|
||||
template_pm_iteration.format(
|
||||
custom_suffix=custom_suffix,
|
||||
micro_service_initial_description=micro_service_initial_description if len(messages) == 1 else '',
|
||||
),
|
||||
role='user'
|
||||
)
|
||||
messages.append(HumanMessage(content=user_input))
|
||||
agent_question = self.extract_content_from_result(agent_response_raw, 'prompt.json',
|
||||
can_contain_code_block=False)
|
||||
final = self.extract_content_from_result(agent_response_raw, 'final.json', can_contain_code_block=False)
|
||||
if final:
|
||||
messages.append(AIMessage(content=final))
|
||||
setattr(self.microservice_specification, refinement_type, final)
|
||||
break
|
||||
elif agent_question:
|
||||
question_parsed = json.loads(agent_question)['question']
|
||||
messages.append(AIMessage(content=question_parsed))
|
||||
user_input = self.get_user_input(pm, question_parsed)
|
||||
else:
|
||||
if num_parsing_tries > 2:
|
||||
raise self.TaskRefinementException()
|
||||
num_parsing_tries += 1
|
||||
messages.append(AIMessage(content=agent_response_raw))
|
||||
messages.append(
|
||||
SystemMessage(content='You did not put your answer into the right format using *** and ```.'))
|
||||
|
||||
@staticmethod
|
||||
def get_user_input(employee, prompt_to_user):
|
||||
val = input(f'{employee.emoji}❓ {prompt_to_user}\nyou: ')
|
||||
print()
|
||||
while not val:
|
||||
val = input('you: ')
|
||||
return val
|
||||
|
||||
@staticmethod
|
||||
def replace_with_gpt_3_5_turbo_if_possible(pkg):
|
||||
@@ -572,3 +480,16 @@ Test scenario:
|
||||
] for packages in packages_list
|
||||
]
|
||||
return packages_list
|
||||
|
||||
def create_prototype_implementation(self):
|
||||
microservice_py_lines = ['''\
|
||||
Class {microservice_name}:''']
|
||||
for sub_task in self.pm.iterate_over_sub_tasks_pydantic(self.sub_task_tree):
|
||||
microservice_py_lines.append(f' {sub_task.python_fn_signature}')
|
||||
microservice_py_lines.append(f' """')
|
||||
microservice_py_lines.append(f' {sub_task.python_fn_docstring}')
|
||||
microservice_py_lines.append(f' """')
|
||||
microservice_py_lines.append(f' raise NotImplementedError')
|
||||
microservice_py_str = '\n'.join(microservice_py_lines)
|
||||
persist_file(os.path.join(self.microservice_root_path, 'microservice.py'), microservice_py_str)
|
||||
|
||||
|
||||
15
dev_gpt/options/generate/parser.py
Normal file
15
dev_gpt/options/generate/parser.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import json
|
||||
import re
|
||||
|
||||
|
||||
def identity_parser(x):
|
||||
return x
|
||||
|
||||
def boolean_parser(x):
|
||||
return 'yes' in x.lower()
|
||||
|
||||
def json_parser(x):
|
||||
if '```' in x:
|
||||
pattern = r'```(.+)```'
|
||||
x = re.findall(pattern, x, re.DOTALL)[-1]
|
||||
return json.loads(x)
|
||||
@@ -1,346 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from dev_gpt.apis import gpt
|
||||
|
||||
|
||||
class PM:
|
||||
def __init__(self, gpt_session):
|
||||
self.gpt_session = gpt_session
|
||||
|
||||
def refine(self, microservice_description):
|
||||
# microservice_description = self.refine_description(microservice_description)
|
||||
sub_task_tree = self.construct_sub_task_tree(microservice_description)
|
||||
|
||||
def construct_sub_task_tree(self, microservice_description):
|
||||
"""
|
||||
takes a microservice description an recursively constructs a tree of sub-tasks that need to be done to implement the microservice
|
||||
Example1:
|
||||
Input: "I want to implement a microservice that takes a list of numbers and returns the sum of the numbers"
|
||||
Output:
|
||||
[
|
||||
{
|
||||
"task": "I want to implement a microservice that takes a list of numbers and returns the sum of the numbers",
|
||||
"request_json_schema": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"response_json_schema": {
|
||||
"type": "number"
|
||||
},
|
||||
"sub_tasks": [
|
||||
{
|
||||
"task": "Calculate the sum of the numbers",
|
||||
"python_fn_signature": "def calculate_sum(numbers: List[float]) -> float:",
|
||||
"python_fn_docstring": "Calculates the sum of the numbers\n\nArgs:\n numbers: a list of numbers\n\nReturns:\n the sum of the numbers",",
|
||||
"sub_tasks": []
|
||||
},
|
||||
]
|
||||
}
|
||||
]
|
||||
Example2: "Input is a list of emails. For all the companies from the emails belonging to, it gets the company's logo. All logos are arranged in a collage and returned."
|
||||
[
|
||||
{
|
||||
"task": "Extract company domains from the list of emails",
|
||||
"sub_tasks": []
|
||||
},
|
||||
{
|
||||
"task": "Retrieve company logos for the extracted domains",
|
||||
"sub_tasks": [
|
||||
{
|
||||
"task": "Find logo URL for each company domain",
|
||||
"sub_tasks": []
|
||||
},
|
||||
{
|
||||
"task": "Download company logos from the URLs",
|
||||
"sub_tasks": []
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"task": "Create a collage of company logos",
|
||||
"sub_tasks": [
|
||||
{
|
||||
"task": "Determine collage layout and dimensions",
|
||||
"sub_tasks": []
|
||||
},
|
||||
{
|
||||
"task": "Position and resize logos in the collage",
|
||||
"sub_tasks": []
|
||||
},
|
||||
{
|
||||
"task": "Combine logos into a single image",
|
||||
"sub_tasks": []
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"task": "Return the collage of company logos",
|
||||
"sub_tasks": []
|
||||
}
|
||||
]
|
||||
"""
|
||||
microservice_description = self.refine_description(microservice_description)
|
||||
sub_task_tree = self.ask_gpt(construct_sub_task_tree_prompt, json_parser,
|
||||
microservice_description=microservice_description)
|
||||
# reflections = self.ask_gpt(sub_task_tree_reflections_prompt, identity_parser, microservice_description=microservice_description, sub_task_tree=sub_task_tree)
|
||||
# solutions = self.ask_gpt(sub_task_tree_solutions_prompt, identity_parser, microservice_description=microservice_description, sub_task_tree=sub_task_tree, reflections=reflections)
|
||||
# sub_task_tree_updated = self.ask_gpt(sub_task_tree_update_prompt, json_parser, microservice_description=microservice_description, sub_task_tree=sub_task_tree, solutions=solutions)
|
||||
# return sub_task_tree_updated
|
||||
return sub_task_tree
|
||||
|
||||
|
||||
def refine_description(self, microservice_description):
|
||||
microservice_description = self.ask_gpt(better_description_prompt, identity_parser, microservice_description=microservice_description)
|
||||
request_schema = self.ask_gpt(generate_request_schema_prompt, identity_parser,
|
||||
microservice_description=microservice_description)
|
||||
response_schema = self.ask_gpt(generate_output_schema_prompt, identity_parser,
|
||||
microservice_description=microservice_description, request_schema=request_schema)
|
||||
# additional_specifications = self.add_additional_specifications(microservice_description, request_schema,
|
||||
# response_schema)
|
||||
microservice_description = self.ask_gpt(summarize_description_and_schemas_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema,
|
||||
response_schema=response_schema,
|
||||
# additional_specifications=additional_specifications
|
||||
)
|
||||
|
||||
while (user_feedback := self.get_user_feedback(microservice_description)):
|
||||
microservice_description = self.ask_gpt(add_feedback_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
user_feedback=user_feedback)
|
||||
return microservice_description
|
||||
|
||||
def add_additional_specifications(self, microservice_description, request_schema, response_schema):
|
||||
questions = self.ask_gpt(
|
||||
ask_questions_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema, response_schema=response_schema)
|
||||
additional_specifications = self.ask_gpt(
|
||||
answer_questions_prompt,
|
||||
identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema,
|
||||
response_schema=response_schema,
|
||||
questions=questions
|
||||
)
|
||||
return additional_specifications
|
||||
|
||||
def get_user_feedback(self, microservice_description):
|
||||
while True:
|
||||
user_feedback = input(
|
||||
f'I suggest that we implement the following microservice:\n{microservice_description}\nDo you agree? [y/n]')
|
||||
if user_feedback.lower() in ['y', 'yes', 'yeah', 'yep', 'yup', 'sure', 'ok', 'okay']:
|
||||
print('Great! I will hand this over to the developers!')
|
||||
return None
|
||||
elif user_feedback.lower() in ['n', 'no', 'nope', 'nah', 'nay', 'not']:
|
||||
return input('What do you want to change?')
|
||||
# return self.refine_user_feedback(microservice_description)
|
||||
|
||||
# Prompting
|
||||
def ask_gpt(self, prompt_template, parser, **kwargs):
|
||||
prompt = prompt_template.format(**kwargs)
|
||||
conversation = self.gpt_session.get_conversation(
|
||||
[],
|
||||
print_stream=os.environ['VERBOSE'].lower() == 'true',
|
||||
print_costs=False
|
||||
)
|
||||
agent_response_raw = conversation.chat(prompt, role='user')
|
||||
agent_response = parser(agent_response_raw)
|
||||
return agent_response
|
||||
|
||||
# def refine_user_feedback(self, microservice_description):
|
||||
# while True:
|
||||
# user_feedback = input('What do you want to change?')
|
||||
# if self.ask_gpt(is_feedback_valuable_prompt, boolean_parser, user_feedback=user_feedback,
|
||||
# microservice_description=microservice_description):
|
||||
# return user_feedback
|
||||
# else:
|
||||
# print('Sorry, I can not handle this feedback. Please formulate it more precisely.')
|
||||
|
||||
|
||||
def identity_parser(x):
|
||||
return x
|
||||
|
||||
|
||||
def boolean_parser(x):
|
||||
return 'yes' in x.lower()
|
||||
|
||||
|
||||
def json_parser(x):
|
||||
if '```' in x:
|
||||
pattern = r'```(.+)```'
|
||||
x = re.findall(pattern, x, re.DOTALL)[-1]
|
||||
return json.loads(x)
|
||||
|
||||
|
||||
client_description = '''\
|
||||
Microservice description:
|
||||
```
|
||||
{microservice_description}
|
||||
```'''
|
||||
|
||||
better_description_prompt = client_description + '''
|
||||
Update the description of the Microservice to make it more precise without adding or removing information.
|
||||
Note: the output must be a list of tasks the Microservice has to perform.
|
||||
Example for the description: "return the average temperature of the 5 days weather forecast for a given location."
|
||||
1. get the 5 days weather forcast from the https://openweathermap.org/ API
|
||||
2. extract the temperature from the response
|
||||
3. calculate the average temperature'''
|
||||
|
||||
# better_description_prompt = client_description + '''
|
||||
# Update the description of the Microservice to make it more precise without adding or removing information.'''
|
||||
|
||||
generate_request_schema_prompt = client_description + '''
|
||||
Generate the lean request json schema of the Microservice.
|
||||
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
|
||||
|
||||
generate_output_schema_prompt = client_description + '''
|
||||
request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Generate the lean response json schema for the Microservice.
|
||||
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
|
||||
|
||||
# If we want to activate this back, then it first needs to work. Currently, it outputs "no" for too many cases.
|
||||
# is_feedback_valuable_prompt = client_description + '''
|
||||
# User feedback:
|
||||
# ```
|
||||
# {user_feedback}
|
||||
# ```
|
||||
# Can this feedback be used to update the microservice description?
|
||||
# Note: You must either answer "yes" or "no".
|
||||
# Note: If the user does not want to provide feedback, then you must answer "no".'''
|
||||
|
||||
|
||||
summarize_description_and_schemas_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Write an updated microservice description by incorporating information about the request and response parameters in a concise way without losing any information.
|
||||
Note: You must not mention any details about algorithms or the technical implementation.
|
||||
Note: You must not mention that there is a request and response JSON schema
|
||||
Note: You must not use any formatting like triple backticks.'''
|
||||
|
||||
add_feedback_prompt = client_description + '''
|
||||
User feedback:
|
||||
```
|
||||
{user_feedback}
|
||||
```
|
||||
Update the microservice description by incorporating the user feedback in a concise way without losing any information.'''
|
||||
|
||||
summarize_description_prompt = client_description + '''
|
||||
Make the description more concise without losing any information.
|
||||
Note: You must not mention any details about algorithms or the technical implementation.
|
||||
Note: You must ignore facts that are not specified.
|
||||
Note: You must ignore facts that are not relevant.
|
||||
Note: You must ignore facts that are unknown.
|
||||
Note: You must ignore facts that are unclear.'''
|
||||
|
||||
construct_sub_task_tree_prompt = client_description + '''\
|
||||
Recursively constructs a tree of sub-tasks that need to be done to implement the microservice
|
||||
Example1:
|
||||
Input: "I want to implement a microservice that takes a list of numbers and returns the sum of the numbers"
|
||||
Output:
|
||||
[
|
||||
{{
|
||||
"task": "I want to implement a microservice that takes a list of numbers and returns the sum of the numbers",
|
||||
"request_json_schema": {{
|
||||
"type": "array",
|
||||
"items": {{
|
||||
"type": "number"
|
||||
}}
|
||||
}},
|
||||
"response_json_schema": {{
|
||||
"type": "number"
|
||||
}},
|
||||
"sub_tasks": [
|
||||
{{
|
||||
"task": "Calculate the sum of the numbers",
|
||||
"python_fn_signature": "def calculate_sum(numbers: List[float]) -> float:",
|
||||
"python_fn_docstring": "Calculates the sum of the numbers\\n\\nArgs:\\n numbers: a list of numbers\\n\\nReturns:\\n the sum of the numbers",
|
||||
"sub_tasks": []
|
||||
}}
|
||||
]
|
||||
}}
|
||||
]
|
||||
Note: you must only output the json string - nothing else.
|
||||
Note: you must pretty print the json string.'''
|
||||
|
||||
sub_task_tree_reflections_prompt = client_description + '''\
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Reflect on the sub task tree and write up to 10 constructive criticisms (5 words) about it.'''
|
||||
|
||||
sub_task_tree_solutions_prompt = client_description + '''\
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Reflections:
|
||||
```
|
||||
{reflections}
|
||||
```
|
||||
For each constructive criticism, write a solution (5 words) that address the criticism.'''
|
||||
|
||||
sub_task_tree_update_prompt = client_description + '''\
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Solutions:
|
||||
```
|
||||
{solutions}
|
||||
```
|
||||
Update the sub task tree by applying the solutions. (pritty print the json string)'''
|
||||
|
||||
|
||||
ask_questions_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Ask the user up to 5 unique detailed questions (5 words) about the microservice description that are not yet answered.
|
||||
'''
|
||||
|
||||
answer_questions_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Questions:
|
||||
```
|
||||
{questions}
|
||||
```
|
||||
Answer all questions where you can think of a plausible answer.
|
||||
Note: You must not answer questions with something like "...is not specified", "I don't know" or "Unknown".
|
||||
'''
|
||||
|
||||
if __name__ == '__main__':
|
||||
gpt_session = gpt.GPTSession(None, 'GPT-3.5-turbo')
|
||||
first_question = 'Please specify your microservice.'
|
||||
initial_description = 'mission generator'
|
||||
# initial_description = 'convert png to svg'
|
||||
initial_description = "Input is a list of emails. For all the companies from the emails belonging to, it gets the company's logo. All logos are arranged in a collage and returned."
|
||||
initial_description = "Given an image, write a joke on it that is relevant to the image."
|
||||
PM(gpt_session).refine(initial_description)
|
||||
# PM(gpt_session).construct_sub_task_tree(initial_description)#.refine(initial_description)
|
||||
0
dev_gpt/options/generate/pm/__init__.py
Normal file
0
dev_gpt/options/generate/pm/__init__.py
Normal file
437
dev_gpt/options/generate/pm/pm.py
Normal file
437
dev_gpt/options/generate/pm/pm.py
Normal file
@@ -0,0 +1,437 @@
|
||||
import json
|
||||
import re
|
||||
from typing import Generator
|
||||
|
||||
from dev_gpt.apis import gpt
|
||||
from dev_gpt.apis.gpt import ask_gpt
|
||||
from dev_gpt.options.generate.chains.condition import is_false, is_true
|
||||
from dev_gpt.options.generate.chains.get_user_input_if_neede import get_user_input_if_needed
|
||||
from dev_gpt.options.generate.parser import identity_parser, boolean_parser, json_parser
|
||||
from dev_gpt.options.generate.pm.task_tree_schema import TaskTree
|
||||
from dev_gpt.options.generate.ui import get_random_employee
|
||||
|
||||
|
||||
class PM:
|
||||
def refine_specification(self, microservice_description) -> TaskTree:
|
||||
pm = get_random_employee('pm')
|
||||
print(f'{pm.emoji}👋 Hi, I\'m {pm.name}, a PM at Jina AI. Gathering the requirements for our engineers.')
|
||||
original_task = microservice_description
|
||||
if not original_task:
|
||||
microservice_description = self.get_user_input(pm, 'What should your microservice do?')
|
||||
microservice_description, test_description = self.refine(microservice_description)
|
||||
print(f'''
|
||||
{pm.emoji} 👍 Great, I will handover the following requirements to our engineers:
|
||||
Description of the microservice:
|
||||
{microservice_description}
|
||||
''')
|
||||
return microservice_description, test_description
|
||||
|
||||
@staticmethod
|
||||
def get_user_input(employee, prompt_to_user):
|
||||
val = input(f'{employee.emoji}❓ {prompt_to_user}\nyou: ')
|
||||
print()
|
||||
while not val:
|
||||
val = input('you: ')
|
||||
return val
|
||||
|
||||
def refine(self, microservice_description) -> TaskTree:
|
||||
microservice_description, test_description = self.refine_description(microservice_description)
|
||||
return microservice_description, test_description
|
||||
# sub_task_tree = self.construct_sub_task_tree(microservice_description)
|
||||
# return sub_task_tree
|
||||
|
||||
def get_nlp_fns(self, microservice_description):
|
||||
return ask_gpt(
|
||||
get_nlp_fns_prompt,
|
||||
json_parser,
|
||||
microservice_description=microservice_description
|
||||
)
|
||||
|
||||
def construct_sub_task_tree(self, microservice_description):
|
||||
"""
|
||||
takes a microservice description and recursively constructs a tree of sub-tasks that need to be done to implement the microservice
|
||||
"""
|
||||
#
|
||||
# nlp_fns = self.get_nlp_fns(
|
||||
# microservice_description
|
||||
# )
|
||||
|
||||
sub_task_tree_dict = ask_gpt(
|
||||
construct_sub_task_tree_prompt, json_parser,
|
||||
microservice_description=microservice_description,
|
||||
# nlp_fns=nlp_fns
|
||||
)
|
||||
reflections = ask_gpt(
|
||||
sub_task_tree_reflections_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
# nlp_fns=nlp_fns,
|
||||
sub_task_tree=sub_task_tree_dict,
|
||||
)
|
||||
solutions = ask_gpt(
|
||||
sub_task_tree_solutions_prompt, identity_parser,
|
||||
# nlp_fns=nlp_fns,
|
||||
microservice_description=microservice_description, sub_task_tree=sub_task_tree_dict,
|
||||
reflections=reflections,
|
||||
)
|
||||
sub_task_tree_updated = ask_gpt(
|
||||
sub_task_tree_update_prompt,
|
||||
json_parser,
|
||||
microservice_description=microservice_description,
|
||||
# nlp_fns=nlp_fns,
|
||||
sub_task_tree=sub_task_tree_dict, solutions=solutions
|
||||
)
|
||||
# for task_dict in self.iterate_over_sub_tasks(sub_task_tree_updated):
|
||||
# task_dict.update(self.get_additional_task_info(task_dict['task']))
|
||||
|
||||
sub_task_tree = TaskTree.parse_obj(sub_task_tree_updated)
|
||||
return sub_task_tree
|
||||
|
||||
def get_additional_task_info(self, sub_task_description):
|
||||
additional_info_dict = self.get_additional_infos(
|
||||
description=sub_task_description,
|
||||
parameter={
|
||||
'display_name': 'Task description',
|
||||
'text': sub_task_description,
|
||||
},
|
||||
potentially_required_information_list=[
|
||||
{
|
||||
'field_name': 'api_key',
|
||||
'display_name': 'valid API key',
|
||||
}, {
|
||||
'field_name': 'database_access',
|
||||
'display_name': 'database access',
|
||||
}, {
|
||||
'field_name': 'documentation',
|
||||
'display_name': 'documentation',
|
||||
}, {
|
||||
'field_name': 'example_api_call',
|
||||
'display_name': 'curl command or sample code for api call',
|
||||
},
|
||||
],
|
||||
|
||||
)
|
||||
return additional_info_dict
|
||||
|
||||
def get_additional_infos(self, description, parameter, potentially_required_information_list):
|
||||
additional_info_dict = {}
|
||||
for potentially_required_information in potentially_required_information_list:
|
||||
is_task_requiring_information = ask_gpt(
|
||||
is_task_requiring_information_template,
|
||||
boolean_parser,
|
||||
description=description,
|
||||
description_title=parameter['display_name'],
|
||||
description_text=parameter['text'],
|
||||
potentially_required_information=potentially_required_information
|
||||
)
|
||||
if is_task_requiring_information:
|
||||
generated_question = ask_gpt(
|
||||
generate_question_for_required_information_template,
|
||||
identity_parser,
|
||||
description=description,
|
||||
description_title=parameter['display_name'],
|
||||
description_text=parameter['text'],
|
||||
potentially_required_information=potentially_required_information
|
||||
)
|
||||
user_answer = input(generated_question)
|
||||
additional_info_dict[potentially_required_information] = user_answer
|
||||
return additional_info_dict
|
||||
|
||||
def iterate_over_sub_tasks(self, sub_task_tree_updated):
|
||||
sub_tasks = sub_task_tree_updated['sub_tasks'] if 'sub_tasks' in sub_task_tree_updated else []
|
||||
for sub_task in sub_tasks:
|
||||
yield sub_task
|
||||
yield from self.iterate_over_sub_tasks(sub_task)
|
||||
|
||||
def iterate_over_sub_tasks_pydantic(self, sub_task_tree: TaskTree) -> Generator[TaskTree, None, None]:
|
||||
sub_tasks = sub_task_tree.sub_fns
|
||||
for sub_task in sub_tasks:
|
||||
yield sub_task
|
||||
yield from self.iterate_over_sub_tasks_pydantic(sub_task)
|
||||
|
||||
def refine_description(self, microservice_description):
|
||||
microservice_description = ask_gpt(better_description_prompt, identity_parser,
|
||||
microservice_description=microservice_description)
|
||||
request_schema = ask_gpt(generate_request_schema_prompt, identity_parser,
|
||||
microservice_description=microservice_description)
|
||||
response_schema = ask_gpt(generate_output_schema_prompt, identity_parser,
|
||||
microservice_description=microservice_description, request_schema=request_schema)
|
||||
# additional_specifications = self.add_additional_specifications(microservice_description, request_schema,
|
||||
# response_schema)
|
||||
microservice_description = ask_gpt(summarize_description_and_schemas_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema,
|
||||
response_schema=response_schema,
|
||||
# additional_specifications=additional_specifications
|
||||
)
|
||||
|
||||
while (user_feedback := self.get_user_feedback(microservice_description)):
|
||||
microservice_description = ask_gpt(add_feedback_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
user_feedback=user_feedback)
|
||||
test_description = ask_gpt(
|
||||
generate_test_description_prompt,
|
||||
identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema,
|
||||
response_schema=response_schema
|
||||
)
|
||||
example_file_url = get_user_input_if_needed(
|
||||
context={
|
||||
'Microservice description': microservice_description,
|
||||
'Request schema': request_schema,
|
||||
'Response schema': response_schema,
|
||||
},
|
||||
conditions=[
|
||||
is_true('Does request schema contain an example file url?'),
|
||||
is_false('Is input url specified in the description?'),
|
||||
],
|
||||
question_gen_prompt_part="Generate a question that asks for an example file url.",
|
||||
)
|
||||
if example_file_url:
|
||||
test_description += f'\nInput Example: {example_file_url}'
|
||||
|
||||
return microservice_description, test_description
|
||||
|
||||
def add_additional_specifications(self, microservice_description, request_schema, response_schema):
|
||||
questions = ask_gpt(
|
||||
ask_questions_prompt, identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema, response_schema=response_schema)
|
||||
additional_specifications = ask_gpt(
|
||||
answer_questions_prompt,
|
||||
identity_parser,
|
||||
microservice_description=microservice_description,
|
||||
request_schema=request_schema,
|
||||
response_schema=response_schema,
|
||||
questions=questions
|
||||
)
|
||||
return additional_specifications
|
||||
|
||||
def get_user_feedback(self, microservice_description):
|
||||
while True:
|
||||
user_feedback = input(
|
||||
f'I suggest that we implement the following microservice:\n{microservice_description}\nDo you agree? [y/n]')
|
||||
if user_feedback.lower() in ['y', 'yes', 'yeah', 'yep', 'yup', 'sure', 'ok', 'okay']:
|
||||
print('Great! I will hand this over to the developers!')
|
||||
return None
|
||||
elif user_feedback.lower() in ['n', 'no', 'nope', 'nah', 'nay', 'not']:
|
||||
return input('What do you want to change?')
|
||||
# return self.refine_user_feedback(microservice_description)
|
||||
|
||||
# def refine_user_feedback(self, microservice_description):
|
||||
# while True:
|
||||
# user_feedback = input('What do you want to change?')
|
||||
# if ask_gpt(is_feedback_valuable_prompt, boolean_parser, user_feedback=user_feedback,
|
||||
# microservice_description=microservice_description):
|
||||
# return user_feedback
|
||||
# else:
|
||||
# print('Sorry, I can not handle this feedback. Please formulate it more precisely.')
|
||||
|
||||
|
||||
client_description = '''\
|
||||
Microservice description:
|
||||
```
|
||||
{microservice_description}
|
||||
```'''
|
||||
|
||||
better_description_prompt = client_description + '''
|
||||
Update the description of the Microservice to make it more precise without adding or removing information.
|
||||
Note: the output must be a list of tasks the Microservice has to perform.
|
||||
Example for the description: "return the average temperature of the 5 days weather forecast for a given location."
|
||||
1. get the 5 days weather forcast from the https://openweathermap.org/ API
|
||||
2. extract the temperature from the response
|
||||
3. calculate the average temperature'''
|
||||
|
||||
# better_description_prompt = client_description + '''
|
||||
# Update the description of the Microservice to make it more precise without adding or removing information.'''
|
||||
|
||||
generate_request_schema_prompt = client_description + '''
|
||||
Generate the lean request json schema of the Microservice.
|
||||
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
|
||||
|
||||
generate_output_schema_prompt = client_description + '''
|
||||
request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Generate the lean response json schema for the Microservice.
|
||||
Note: If you are not sure about the details, the come up with the minimal number of parameters possible.'''
|
||||
|
||||
# If we want to activate this back, then it first needs to work. Currently, it outputs "no" for too many cases.
|
||||
# is_feedback_valuable_prompt = client_description + '''
|
||||
# User feedback:
|
||||
# ```
|
||||
# {user_feedback}
|
||||
# ```
|
||||
# Can this feedback be used to update the microservice description?
|
||||
# Note: You must either answer "yes" or "no".
|
||||
# Note: If the user does not want to provide feedback, then you must answer "no".'''
|
||||
|
||||
|
||||
summarize_description_and_schemas_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Write an updated microservice description by incorporating information about the request and response parameters in a concise way without losing any information.
|
||||
Note: You must not mention any details about algorithms or the technical implementation.
|
||||
Note: You must not mention that there is a request and response JSON schema
|
||||
Note: You must not use any formatting like triple backticks.'''
|
||||
|
||||
add_feedback_prompt = client_description + '''
|
||||
User feedback:
|
||||
```
|
||||
{user_feedback}
|
||||
```
|
||||
Update the microservice description by incorporating the user feedback in a concise way without losing any information.'''
|
||||
|
||||
summarize_description_prompt = client_description + '''
|
||||
Make the description more concise without losing any information.
|
||||
Note: You must not mention any details about algorithms or the technical implementation.
|
||||
Note: You must ignore facts that are not specified.
|
||||
Note: You must ignore facts that are not relevant.
|
||||
Note: You must ignore facts that are unknown.
|
||||
Note: You must ignore facts that are unclear.'''
|
||||
|
||||
construct_sub_task_tree_prompt = client_description + '''
|
||||
Recursively constructs a tree of functions that need to be implemented for the endpoint_function that retrieves a json string and returns a json string.
|
||||
Example:
|
||||
Input: "Input: list of integers, Output: Audio file of short story where each number is mentioned exactly once."
|
||||
Output:
|
||||
{{
|
||||
"description": "Create an audio file containing a short story in which each integer from the provided list is seamlessly incorporated, ensuring that every integer is mentioned exactly once.",
|
||||
"python_fn_signature": "def generate_integer_story_audio(numbers: List[int]) -> str:",
|
||||
"sub_fns": [
|
||||
{{
|
||||
"description": "Generate sentence from integer.",
|
||||
"python_fn_signature": "def generate_sentence_from_integer(number: int) -> int:",
|
||||
"sub_fns": []
|
||||
}},
|
||||
{{
|
||||
"description": "Convert the story into an audio file.",
|
||||
"python_fn_signature": "def convert_story_to_audio(story: str) -> bytes:",
|
||||
"sub_fns": []
|
||||
}}
|
||||
]
|
||||
}}
|
||||
|
||||
Note: you must only output the json string - nothing else.
|
||||
Note: you must pretty print the json string.'''
|
||||
|
||||
sub_task_tree_reflections_prompt = client_description + '''
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Write down 3 arguments why the sub task tree might not perfectly represents the information mentioned in the microservice description. (5 words per argument)'''
|
||||
|
||||
sub_task_tree_solutions_prompt = client_description + '''
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Reflections:
|
||||
```
|
||||
{reflections}
|
||||
```
|
||||
For each constructive criticism, write a solution (5 words) that address the criticism.'''
|
||||
|
||||
sub_task_tree_update_prompt = client_description + '''
|
||||
Sub task tree:
|
||||
```
|
||||
{sub_task_tree}
|
||||
```
|
||||
Solutions:
|
||||
```
|
||||
{solutions}
|
||||
```
|
||||
Update the sub task tree by applying the solutions. (pretty print the json string)'''
|
||||
|
||||
ask_questions_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Ask the user up to 5 unique detailed questions (5 words) about the microservice description that are not yet answered.
|
||||
'''
|
||||
|
||||
answer_questions_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Questions:
|
||||
```
|
||||
{questions}
|
||||
```
|
||||
Answer all questions where you can think of a plausible answer.
|
||||
Note: You must not answer questions with something like "...is not specified", "I don't know" or "Unknown".
|
||||
'''
|
||||
|
||||
is_task_requiring_information_template = '''\
|
||||
{description_title}
|
||||
```
|
||||
{description_text}
|
||||
```
|
||||
Does the implementation of the {description_title} require information about "{potentially_required_information}"?
|
||||
Note: You must either answer "yes" or "no".'''
|
||||
|
||||
generate_question_for_required_information_template = '''\
|
||||
{description_title}
|
||||
```
|
||||
{description_text}
|
||||
```
|
||||
Generate a question that asks for the information "{potentially_required_information}" regarding "{description_title}".
|
||||
Note: you must only output the question - nothing else.'''
|
||||
|
||||
get_nlp_fns_prompt = client_description + '''
|
||||
Respond with all code parts that could be accomplished by GPT 3.
|
||||
Example for "Take a video and/or a pdf as input, extract the subtitles from the video and the text from the pdf, \
|
||||
summarize the extracted text and translate it to German":
|
||||
```
|
||||
[
|
||||
"summarize the text",
|
||||
"translate the text to German"
|
||||
]
|
||||
```
|
||||
Note: only list code parts that could be expressed as a function that takes a string as input and returns a string as output.
|
||||
Note: the output must be parsable by the python function json.loads.'''
|
||||
|
||||
generate_test_description_prompt = client_description + '''
|
||||
Request json schema:
|
||||
```
|
||||
{request_schema}
|
||||
```
|
||||
Response json schema:
|
||||
```
|
||||
{response_schema}
|
||||
```
|
||||
Generate the description of the test scenario for the microservice.
|
||||
Note: you must only output the test description - nothing else.
|
||||
Note: you must not use any formatting like triple backticks.
|
||||
Note: the test must insert data in defined in the request schema and validate that the type of the response is matching with the response schema.
|
||||
'''
|
||||
|
||||
if __name__ == '__main__':
|
||||
gpt_session = gpt.GPTSession('GPT-3.5-turbo')
|
||||
first_question = 'Please specify your microservice.'
|
||||
initial_description = 'mission generator'
|
||||
# initial_description = 'convert png to svg'
|
||||
# initial_description = "Input is a list of emails. For all the companies from the emails belonging to, it gets the company's logo. All logos are arranged in a collage and returned."
|
||||
# initial_description = "Given an image, write a joke on it that is relevant to the image."
|
||||
# initial_description = "This microservice receives an image as input and generates a joke based on its content and context. The input must be a binary string of the image. The output is an image with the generated joke overlaid on it."
|
||||
initial_description = 'Build me a serch system for lottiefiles animations'
|
||||
PM().refine(initial_description)
|
||||
# PM(gpt_session).construct_sub_task_tree(initial_description)#.refine(initial_description)
|
||||
22
dev_gpt/options/generate/pm/task_tree_schema.py
Normal file
22
dev_gpt/options/generate/pm/task_tree_schema.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from typing import Dict, List, Union, Optional
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class JSONSchema(BaseModel):
|
||||
type: str
|
||||
format: Union[str, None] = None
|
||||
items: Union['JSONSchema', None] = None
|
||||
properties: Dict[str, 'JSONSchema'] = Field(default_factory=dict)
|
||||
additionalProperties: Union[bool, 'JSONSchema'] = True
|
||||
required: List[str] = Field(default_factory=list)
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
class TaskTree(BaseModel):
|
||||
description: Optional[str]
|
||||
python_fn_signature: str
|
||||
sub_fns: List['TaskTree']
|
||||
|
||||
JSONSchema.update_forward_refs()
|
||||
TaskTree.update_forward_refs()
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import platform
|
||||
import string
|
||||
|
||||
if platform.system() == "Windows":
|
||||
os.system("color")
|
||||
@@ -27,3 +28,15 @@ def print_colored(headline, text, color_code, end='\n'):
|
||||
if headline:
|
||||
print(f"{bold_start}{color_start}{headline}{reset}")
|
||||
print(f"{color_start}{text}{reset}", end=end)
|
||||
|
||||
|
||||
def get_template_parameters(formatted_string):
|
||||
formatter = string.Formatter()
|
||||
parsed = formatter.parse(formatted_string)
|
||||
parameters = []
|
||||
|
||||
for literal_text, field_name, format_spec, conversion in parsed:
|
||||
if field_name is not None:
|
||||
parameters.append(field_name)
|
||||
|
||||
return parameters
|
||||
@@ -5,4 +5,5 @@ openai>=0.27.5
|
||||
psutil
|
||||
jcloud
|
||||
jina-hubble-sdk
|
||||
langchain==0.0.153
|
||||
langchain==0.0.153
|
||||
pydantic==1.10.7
|
||||
31
test/conftest.py
Normal file
31
test/conftest.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import os
|
||||
from typing import List, Generator
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def input_generator(input_sequence: list) -> Generator[str, None, None]:
|
||||
"""
|
||||
Creates a generator that yields input strings from the given sequence.
|
||||
|
||||
:param input_sequence: A list of input strings.
|
||||
:return: A generator that yields input strings.
|
||||
"""
|
||||
yield from input_sequence
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_input_sequence(request, monkeypatch) -> None:
|
||||
gen = input_generator(request.param)
|
||||
monkeypatch.setattr("builtins.input", lambda _: next(gen))
|
||||
|
||||
@pytest.fixture
|
||||
def microservice_dir(tmpdir) -> str:
|
||||
"""
|
||||
Creates a temporary directory for a microservice.
|
||||
|
||||
:param tmpdir: A temporary directory.
|
||||
:return: The path of the temporary directory.
|
||||
"""
|
||||
return os.path.join(str(tmpdir), "microservice")
|
||||
|
||||
@@ -7,7 +7,8 @@ from dev_gpt.options.generate.generator import Generator
|
||||
|
||||
# The cognitive difficulty level is determined by the number of requirements the microservice has.
|
||||
|
||||
def test_generation_level_0(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_0(microservice_dir, mock_input_sequence):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ❌
|
||||
@@ -20,15 +21,15 @@ def test_generation_level_0(tmpdir):
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
generator = Generator(
|
||||
"The microservice is very simple, it does not take anything as input and only outputs the word 'test'",
|
||||
str(tmpdir),
|
||||
microservice_dir,
|
||||
'gpt-3.5-turbo'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
|
||||
|
||||
|
||||
def test_generation_level_1(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_1(microservice_dir):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ❌
|
||||
@@ -44,13 +45,14 @@ def test_generation_level_1(tmpdir):
|
||||
Example tweet:
|
||||
\'When your coworker microwaves fish in the break room... AGAIN. 🐟🤢
|
||||
But hey, at least SOMEONE's enjoying their lunch. #officelife\'''',
|
||||
str(tmpdir),
|
||||
str(microservice_dir),
|
||||
'gpt-3.5-turbo'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
|
||||
def test_generation_level_2(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_2(microservice_dir):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ❌
|
||||
@@ -63,12 +65,13 @@ def test_generation_level_2(tmpdir):
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
generator = Generator(
|
||||
"The input is a PDF like https://www.africau.edu/images/default/sample.pdf and the output the summarized text (50 words).",
|
||||
str(tmpdir),
|
||||
str(microservice_dir),
|
||||
'gpt-3.5-turbo'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
def test_generation_level_3(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_3(microservice_dir):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ✅ (calculate the average closing price)
|
||||
@@ -87,12 +90,13 @@ def test_generation_level_3(tmpdir):
|
||||
4. Return the summary as a string.
|
||||
Example input: 'AAPL'
|
||||
''',
|
||||
str(tmpdir),
|
||||
str(microservice_dir),
|
||||
'gpt-3.5-turbo'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
def test_generation_level_4(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_4(microservice_dir):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ❌
|
||||
@@ -123,13 +127,13 @@ print('This is the text from the audio file:', response.json()['text'])
|
||||
4. Return the the audio file as base64 encoded binary.
|
||||
Example input file: https://www.signalogic.com/melp/EngSamples/Orig/ENG_M.wav
|
||||
''',
|
||||
str(tmpdir),
|
||||
str(microservice_dir),
|
||||
'gpt-4'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
|
||||
def test_generation_level_5(tmpdir):
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
def test_generation_level_5(microservice_dir):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ✅ (putting text on the image)
|
||||
@@ -163,15 +167,30 @@ The joke is the put on the image.
|
||||
The output is the image with the joke on it.
|
||||
Example input image: https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/PNG_transparency_demonstration_1.png/560px-PNG_transparency_demonstration_1.png
|
||||
''',
|
||||
str(tmpdir),
|
||||
str(microservice_dir),
|
||||
'gpt-3.5-turbo'
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
|
||||
@pytest.fixture
|
||||
def tmpdir():
|
||||
return 'microservice'
|
||||
# @pytest.fixture
|
||||
# def microservice_dir():
|
||||
# return 'microservice'
|
||||
|
||||
|
||||
# further ideas:
|
||||
# Create a wrapper around google called Joogle. It modifies the page summary preview text of the search results to insert the word Jina as much as possible.
|
||||
# # further ideas:
|
||||
# # Create a wrapper around google called Joogle. It modifies the page summary preview text of the search results to insert the word Jina as much as possible.
|
||||
#
|
||||
# import pytest
|
||||
#
|
||||
# # This is your fixture which can accept parameters
|
||||
# @pytest.fixture
|
||||
# def my_fixture(microservice_dir, request,):
|
||||
# return request.param # request.param will contain the parameter value
|
||||
#
|
||||
# # Here you parameterize the fixture for the test
|
||||
# @pytest.mark.parametrize('my_fixture', ['param1', 'param2', 'param3'], indirect=True)
|
||||
# def test_my_function(my_fixture, microservice_dir):
|
||||
# # 'my_fixture' now contains the value 'param1', 'param2', or 'param3'
|
||||
# # depending on the iteration
|
||||
# # Here you can write your test
|
||||
# ...
|
||||
|
||||
11
test/unit/test_construct_sub_task_tree.py
Normal file
11
test/unit/test_construct_sub_task_tree.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import os
|
||||
|
||||
from dev_gpt.apis import gpt
|
||||
from dev_gpt.options.generate.pm.pm import PM
|
||||
|
||||
def test_construct_sub_task_tree():
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
gpt_session = gpt.GPTSession('test', model='gpt-3.5-turbo')
|
||||
pm = PM(gpt_session)
|
||||
microservice_description = 'This microservice receives an image as input and generates a joke based on what is depicted on the image. The input must be a binary string of the image. The output is an image with the generated joke overlaid on it.'
|
||||
sub_task_tree = pm.construct_sub_task_tree(microservice_description)
|
||||
Reference in New Issue
Block a user