mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-18 22:24:21 +01:00
➕ refactor: summarize error message without line number
This commit is contained in:
4
.github/workflows/ci.yml
vendored
4
.github/workflows/ci.yml
vendored
@@ -10,7 +10,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
group: [0, 1, 2, 3, 4, 5_company_logos]
|
||||
group: [0, 1, 2, 3, 5_company_logos]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.8
|
||||
@@ -28,7 +28,7 @@ jobs:
|
||||
id: test
|
||||
run: |
|
||||
pytest -vs test/integration/test_generator.py::test_generation_level_${{ matrix.group }}
|
||||
timeout-minutes: 17
|
||||
timeout-minutes: 30
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
SCENEX_API_KEY: ${{ secrets.SCENEX_API_KEY }}
|
||||
|
||||
@@ -146,30 +146,30 @@ print('This is the text from the audio file:', response.text)''',
|
||||
],
|
||||
indirect=True
|
||||
)
|
||||
def test_generation_level_4(microservice_dir, mock_input_sequence):
|
||||
"""
|
||||
Requirements:
|
||||
coding challenge: ❌
|
||||
pip packages: ✅ (text to speech)
|
||||
environment: ✅ (tts library)
|
||||
GPT-3.5-turbo: ✅ (summarizing the text)
|
||||
APIs: ✅ (whisper for speech to text)
|
||||
Databases: ❌
|
||||
"""
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
generator = Generator(
|
||||
f'''Given an audio file (1min wav) of speech,
|
||||
1. convert it to text using the Whisper API.
|
||||
2. Summarize the text (~50 words) while still maintaining the key facts.
|
||||
3. Create an audio file of the summarized text using a tts library.
|
||||
4. Return the the audio file as base64 encoded binary.
|
||||
''',
|
||||
str(microservice_dir),
|
||||
# 'gpt-3.5-turbo',
|
||||
'gpt-4',
|
||||
# self_healing=False,
|
||||
)
|
||||
assert generator.generate() == 0
|
||||
# def test_generation_level_4(microservice_dir, mock_input_sequence):
|
||||
# """
|
||||
# Requirements:
|
||||
# coding challenge: ❌
|
||||
# pip packages: ✅ (text to speech)
|
||||
# environment: ✅ (tts library)
|
||||
# GPT-3.5-turbo: ✅ (summarizing the text)
|
||||
# APIs: ✅ (whisper for speech to text)
|
||||
# Databases: ❌
|
||||
# """
|
||||
# os.environ['VERBOSE'] = 'true'
|
||||
# generator = Generator(
|
||||
# f'''Given an audio file (1min wav) of speech,
|
||||
# 1. convert it to text using the Whisper API.
|
||||
# 2. Summarize the text (~50 words) while still maintaining the key facts.
|
||||
# 3. Create an audio file of the summarized text using a tts library.
|
||||
# 4. Return the the audio file as base64 encoded binary.
|
||||
# ''',
|
||||
# str(microservice_dir),
|
||||
# # 'gpt-3.5-turbo',
|
||||
# 'gpt-4',
|
||||
# # self_healing=False,
|
||||
# )
|
||||
# assert generator.generate() == 0
|
||||
|
||||
|
||||
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
|
||||
|
||||
Reference in New Issue
Block a user