Files
dev-gpt/test/integration/test_generator.py
2023-06-06 14:55:07 +02:00

256 lines
8.2 KiB
Python

import os
import pytest
from dev_gpt.options.generate.generator import Generator
# The cognitive difficulty level is determined by the number of requirements the microservice has.
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
def test_generation_level_0(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ❌
pip packages: ❌
environment: ❌
GPT-3.5-turbo: ❌
APIs: ❌
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
"The microservice is very simple, it does not take anything as input and only outputs the word 'test'",
microservice_dir,
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
def test_generation_level_1(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ❌
pip packages: ❌
environment: ❌
GPT-3.5-turbo: ✅ (for summarizing the text)
APIs: ❌
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
'''Input is a tweet that contains passive aggressive language. The output is the positive version of that tweet.''',
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [['y', 'https://www.africau.edu/images/default/sample.pdf']],
indirect=True)
def test_generation_level_2(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ❌
pip packages: ✅ (pdf parser)
environment: ❌
GPT-3.5-turbo: ✅ (for summarizing the text)
APIs: ❌
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
"The input is a PDF and the output the summarized text.",
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [
['y', 'https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png']], indirect=True)
def test_generation_level_2_svg(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ✅
pip packages: ✅
environment: ❌
GPT-3.5-turbo: ❌
APIs: ❌
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
"Get a png as input and return a vectorized version as svg.",
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [['y', 'ticker = yf.Ticker(symbol); data = ticker.history(start=start_date, end=end_date); [row[\'Close\'] for row in data.to_dict(\'records\')]']], indirect=True)
def test_generation_level_3(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ✅ (calculate the average closing price)
pip packages: ❌
environment: ❌
GPT-3.5-turbo: ✅ (for processing the text)
APIs: ✅ (financial data API)
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
f'''The input is a stock symbol (e.g., AAPL for Apple Inc.).
1. Fetch stock data (open, high, low, close, volume) for the past 30 days using a financial data API Yahoo Finance.
2. Calculate the average closing price over the 30 days.
3. Generate a brief summary of the company's stock performance over the past 30 days, including the average closing price and the company name.
4. Return the summary as a string.
Example input: 'AAPL'
''',
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize(
'mock_input_sequence', [
[
'y',
'https://www2.cs.uic.edu/~i101/SoundFiles/taunt.wav',
f'''\
import requests
url = "https://transcribe.whisperapi.com"
headers = {{
'Authorization': 'Bearer {os.environ['WHISPER_API_KEY']}'
}}
data = {{
"url": "URL_OF_STORED_AUDIO_FILE"
}}
response = requests.post(url, headers=headers, data=data)
assert response.status_code == 200
print('This is the text from the audio file:', response.text)''',
'use any library',
# f'''\
# import openai
# audio_file= open("/path/to/file/audio.mp3", "rb")
# transcript = openai.Audio.transcribe("whisper-1", audio_file)'''
]
],
indirect=True
)
# def test_generation_level_4(microservice_dir, mock_input_sequence):
# """
# Requirements:
# coding challenge: ❌
# pip packages: ✅ (text to speech)
# environment: ✅ (tts library)
# GPT-3.5-turbo: ✅ (summarizing the text)
# APIs: ✅ (whisper for speech to text)
# Databases: ❌
# """
# os.environ['VERBOSE'] = 'true'
# generator = Generator(
# f'''Given an audio file (1min wav) of speech,
# 1. convert it to text using the Whisper API.
# 2. Summarize the text (~50 words) while still maintaining the key facts.
# 3. Create an audio file of the summarized text using a tts library.
# 4. Return the the audio file as base64 encoded binary.
# ''',
# str(microservice_dir),
# # 'gpt-3.5-turbo',
# 'gpt-4',
# # self_healing=False,
# )
# assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [['y']], indirect=True)
def test_generation_level_5_company_logos(microservice_dir, mock_input_sequence):
os.environ['VERBOSE'] = 'true'
generator = Generator(
f'''\
Given a list of email addresses, get all unique company names from them.
For all companies, get the company logo.
All logos need to be arranged on a square.
The square is returned as png.''',
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
@pytest.mark.parametrize('mock_input_sequence', [['y',
'https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/PNG_transparency_demonstration_1.png/560px-PNG_transparency_demonstration_1.png']],
indirect=True)
def test_generation_level_5(microservice_dir, mock_input_sequence):
"""
Requirements:
coding challenge: ✅ (putting text on the image)
pip packages: ✅ (Pillow for image processing)
environment: ✅ (image library)
GPT-3.5-turbo: ✅ (for writing the joke)
APIs: ✅ (scenex for image description)
Databases: ❌
"""
os.environ['VERBOSE'] = 'true'
generator = Generator(
f'''
The input is an image.
Use the following api to get the description of the image:
Request:
curl "https://us-central1-causal-diffusion.cloudfunctions.net/describe" \\
-H "x-api-key: token {os.environ['SCENEX_API_KEY']}" \\
-H "content-type: application/json" \\
--data '{{"data":[
{{"image": "<image url here>", "features": []}}
]}}'
Result format:
{{
"result": [
{{
"text": "<image description>"
}}
]
}}
The description is then used to generate a joke.
The joke is the put on the image.
The output is the image with the joke on it.
''',
str(microservice_dir),
'gpt-3.5-turbo',
# self_healing=False,
)
assert generator.generate() == 0
# @pytest.fixture
# def microservice_dir():
# return 'microservice'
# # further ideas:
# # Create a wrapper around google called Joogle. It modifies the page summary preview text of the search results to insert the word Jina as much as possible.
#
# import pytest
#
# # This is your fixture which can accept parameters
# @pytest.fixture
# def my_fixture(microservice_dir, request,):
# return request.param # request.param will contain the parameter value
#
# # Here you parameterize the fixture for the test
# @pytest.mark.parametrize('my_fixture', ['param1', 'param2', 'param3'], indirect=True)
# def test_my_function(my_fixture, microservice_dir):
# # 'my_fixture' now contains the value 'param1', 'param2', or 'param3'
# # depending on the iteration
# # Here you can write your test
# ...