feat: uncomment

This commit is contained in:
Florian Hönicke
2023-03-22 23:38:31 +01:00
parent f408378c33
commit 970ddd1ebf

View File

@@ -18,85 +18,83 @@ def wrap_content_in_code_block(executor_content, file_name, tag):
def main(
executor_description,
input_modality,
# input_doc_field,
output_modality,
# output_doc_field,
test_scenario,
do_validation=True
):
# input_doc_field = 'text' if input_modality == 'text' else 'blob'
# output_doc_field = 'text' if output_modality == 'text' else 'blob'
# # random integer at the end of the executor name to avoid name clashes
# executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
# recreate_folder('executor')
# EXECUTOR_FOLDER_v1 = 'executor/v1'
# recreate_folder(EXECUTOR_FOLDER_v1)
# recreate_folder('flow')
#
# print_colored('', '############# Executor #############', 'red')
# user_query = (
# general_guidelines()
# + executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
# output_modality, output_doc_field)
# + chain_of_thought_creation()
# )
# conversation = gpt.Conversation()
# conversation.query(user_query)
# executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
# executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
# persist_file(executor_content, 'executor.py')
#
# print_colored('', '############# Test Executor #############', 'red')
# user_query = (
# general_guidelines()
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
# + test_executor_file_task(executor_name, test_scenario)
# )
# conversation = gpt.Conversation()
# conversation.query(user_query)
# test_executor_content_raw = conversation.query(
# chain_of_thought_optimization('python', 'test_executor.py')
# + "Don't add any additional tests. "
# )
# test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
# persist_file(test_executor_content, 'test_executor.py')
#
# print_colored('', '############# Requirements #############', 'red')
# user_query = (
# general_guidelines()
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
# + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
# + requirements_file_task()
# )
# conversation = gpt.Conversation()
# conversation.query(user_query)
# requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt') + "Keep the same version of jina ")
#
# requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
# persist_file(requirements_content, 'requirements.txt')
#
# print_colored('', '############# Dockerfile #############', 'red')
# user_query = (
# general_guidelines()
# + wrap_content_in_code_block(executor_content, 'executor.py', 'python')
# + wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
# + wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
# + docker_file_task()
# )
# conversation = gpt.Conversation()
# conversation.query(user_query)
# dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
# dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
# persist_file(dockerfile_content, 'Dockerfile')
#
# write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
input_doc_field = 'text' if input_modality == 'text' else 'blob'
output_doc_field = 'text' if output_modality == 'text' else 'blob'
# random integer at the end of the executor name to avoid name clashes
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
recreate_folder('executor')
EXECUTOR_FOLDER_v1 = 'executor/v1'
recreate_folder(EXECUTOR_FOLDER_v1)
recreate_folder('flow')
print_colored('', '############# Executor #############', 'red')
user_query = (
general_guidelines()
+ executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
output_modality, output_doc_field)
+ chain_of_thought_creation()
)
conversation = gpt.Conversation()
conversation.query(user_query)
executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
persist_file(executor_content, 'executor.py')
print_colored('', '############# Test Executor #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ test_executor_file_task(executor_name, test_scenario)
)
conversation = gpt.Conversation()
conversation.query(user_query)
test_executor_content_raw = conversation.query(
chain_of_thought_optimization('python', 'test_executor.py')
+ "Don't add any additional tests. "
)
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
persist_file(test_executor_content, 'test_executor.py')
print_colored('', '############# Requirements #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
+ requirements_file_task()
)
conversation = gpt.Conversation()
conversation.query(user_query)
requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt') + "Keep the same version of jina ")
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
persist_file(requirements_content, 'requirements.txt')
print_colored('', '############# Dockerfile #############', 'red')
user_query = (
general_guidelines()
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
+ docker_file_task()
)
conversation = gpt.Conversation()
conversation.query(user_query)
dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
persist_file(dockerfile_content, 'Dockerfile')
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
for i in range(1, 20):
conversation = gpt.Conversation()
error = build_docker(f'executor_level2/v{i}')
error = build_docker(f'executor/v{i}')
if error:
recreate_folder(f'executor_level2/v{i + 1}')
file_name_to_content = get_all_executor_files_with_content(f'executor_level2/v{i}')
recreate_folder(f'executor/v{i + 1}')
file_name_to_content = get_all_executor_files_with_content(f'executor/v{i}')
all_files_string = files_to_string(file_name_to_content)
user_query = (
'Here are all the files I use:\n'
@@ -120,12 +118,12 @@ def main(
file_name_to_content[file_name] = updated_file
for file_name, content in file_name_to_content.items():
persist_file(content, f'executor_level2/v{i + 1}/{file_name}')
persist_file(content, f'executor/v{i + 1}/{file_name}')
else:
break
error = jina_cloud.push_executor('executor_level2')
jina_cloud.push_executor('executor')
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
# create playgorund and client.py
@@ -149,7 +147,7 @@ if __name__ == '__main__':
"and outputs a 2D image projection of that object where the full object is shown. ",
input_modality='3d',
output_modality='image',
test_scenario='Test that 3d object from https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj '
test_scenario='Test that 3d object from https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj '
'is put in and out comes a 2d rendering of it',
do_validation=False
)