mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 07:04:20 +01:00
feat: chain of thought
This commit is contained in:
351
main.py
351
main.py
@@ -1,17 +1,17 @@
|
||||
import importlib
|
||||
# import importlib
|
||||
import os
|
||||
import re
|
||||
|
||||
from src import gpt, jina_cloud
|
||||
from src.constants import FILE_AND_TAG_PAIRS, EXECUTOR_FOLDER_v1, EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME, STREAMLIT_FILE_NAME
|
||||
from src.jina_cloud import update_client_line_in_file
|
||||
from src.prompt_system import system_base_definition
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
||||
test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task
|
||||
from src.utils.io import recreate_folder
|
||||
from src.utils.string_tools import find_differences
|
||||
|
||||
|
||||
#
|
||||
# from src import gpt, jina_cloud
|
||||
# from src.constants import FILE_AND_TAG_PAIRS, EXECUTOR_FOLDER_v1, EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME, STREAMLIT_FILE_NAME
|
||||
# from src.jina_cloud import update_client_line_in_file
|
||||
# from src.prompt_system import system_base_definition
|
||||
# from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
||||
# test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task, chain_of_thought_creation
|
||||
# from src.utils.io import recreate_folder
|
||||
# from src.utils.string_tools import find_differences
|
||||
#
|
||||
#
|
||||
def extract_content_from_result(plain_text, file_name):
|
||||
pattern = fr"^\*\*{file_name}\*\*\n```(?:\w+\n)?([\s\S]*?)```"
|
||||
match = re.search(pattern, plain_text, re.MULTILINE)
|
||||
@@ -19,16 +19,16 @@ def extract_content_from_result(plain_text, file_name):
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
raise ValueError(f'Could not find {file_name} in result')
|
||||
|
||||
|
||||
def extract_and_write(plain_text, dest_folder):
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
clean = extract_content_from_result(plain_text, file_name)
|
||||
full_path = os.path.join(dest_folder, file_name)
|
||||
with open(full_path, 'w') as f:
|
||||
f.write(clean)
|
||||
|
||||
|
||||
#
|
||||
#
|
||||
# def extract_and_write(plain_text, dest_folder):
|
||||
# for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
# clean = extract_content_from_result(plain_text, file_name)
|
||||
# full_path = os.path.join(dest_folder, file_name)
|
||||
# with open(full_path, 'w') as f:
|
||||
# f.write(clean)
|
||||
#
|
||||
#
|
||||
def write_config_yml(executor_name, dest_folder):
|
||||
config_content = f'''
|
||||
jtype: {executor_name}
|
||||
@@ -39,156 +39,157 @@ metas:
|
||||
'''
|
||||
with open(os.path.join(dest_folder, 'config.yml'), 'w') as f:
|
||||
f.write(config_content)
|
||||
|
||||
|
||||
def get_all_executor_files_with_content(folder_path):
|
||||
file_name_to_content = {}
|
||||
for filename in os.listdir(folder_path):
|
||||
file_path = os.path.join(folder_path, filename)
|
||||
|
||||
if os.path.isfile(file_path):
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
content = file.read()
|
||||
file_name_to_content[filename] = content
|
||||
|
||||
return file_name_to_content
|
||||
|
||||
|
||||
def build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
output_doc_field, output_modality, test_in, test_out):
|
||||
system_definition = (
|
||||
system_base_definition
|
||||
+ "The user is asking you to create an executor with all the necessary files "
|
||||
"and you write the complete code without leaving something out. "
|
||||
)
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
output_modality, output_doc_field)
|
||||
+ test_executor_file_task(executor_name, test_in, test_out)
|
||||
+ requirements_file_task()
|
||||
+ docker_file_task()
|
||||
+ client_file_task()
|
||||
+ streamlit_file_task()
|
||||
+ "First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
||||
"For example, there are different libraries you could use. "
|
||||
"Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
||||
"Then write as I told you. "
|
||||
)
|
||||
plain_text = gpt.get_response(system_definition, user_query)
|
||||
return plain_text
|
||||
|
||||
|
||||
def build_production_ready_implementation(all_executor_files_string):
|
||||
system_definition = (
|
||||
system_base_definition
|
||||
+ f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
||||
f"The files may contain bugs. Fix all of them. "
|
||||
|
||||
)
|
||||
user_query = (
|
||||
'Make it production ready. '
|
||||
"Fix all files and add all missing code. "
|
||||
"Keep the same format as given to you. "
|
||||
f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
f"Some imports might be missing. Make sure to add them. "
|
||||
f"Some libraries might be missing. Make sure to install them in the requirements.txt and Dockerfile. "
|
||||
"First write down an extensive list of obvious and non-obvious thoughts about what parts could need an adjustment and why. "
|
||||
"Think about if all the changes are required and finally decide for the changes you want to make. "
|
||||
f"Output all the files even the ones that did not change. "
|
||||
"Here are the files: \n\n"
|
||||
+ all_executor_files_string
|
||||
)
|
||||
all_executor_files_string_improved = gpt.get_response(system_definition, user_query)
|
||||
print('DIFFERENCES:', find_differences(all_executor_files_string, all_executor_files_string_improved))
|
||||
return all_executor_files_string_improved
|
||||
|
||||
def files_to_string(file_name_to_content):
|
||||
all_executor_files_string = ''
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
all_executor_files_string += f'**{file_name}**\n'
|
||||
all_executor_files_string += f'```{tag}\n'
|
||||
all_executor_files_string += file_name_to_content[file_name]
|
||||
all_executor_files_string += '\n```\n\n'
|
||||
return all_executor_files_string
|
||||
|
||||
|
||||
def main(
|
||||
executor_name,
|
||||
executor_description,
|
||||
input_modality,
|
||||
input_doc_field,
|
||||
output_modality,
|
||||
output_doc_field,
|
||||
test_in,
|
||||
test_out,
|
||||
do_validation=True
|
||||
):
|
||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
recreate_folder(EXECUTOR_FOLDER_v2)
|
||||
recreate_folder('flow')
|
||||
|
||||
all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
output_doc_field, output_modality, test_in, test_out)
|
||||
extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
||||
all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
||||
|
||||
all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
||||
extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
||||
|
||||
jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
||||
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
||||
|
||||
if do_validation:
|
||||
importlib.import_module("executor_v1.client")
|
||||
|
||||
return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# ######### Level 2 task #########
|
||||
# main(
|
||||
# executor_name='My3DTo2DExecutor',
|
||||
# executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
# input_modality='3d',
|
||||
# input_doc_field='blob',
|
||||
# output_modality='image',
|
||||
# output_doc_field='blob',
|
||||
# test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
# test_out='the output should be exactly one image in png format',
|
||||
# do_validation=False
|
||||
# )
|
||||
|
||||
######## Level 1 task #########
|
||||
main(
|
||||
executor_name='MyCoolOcrExecutor',
|
||||
executor_description="OCR detector",
|
||||
input_modality='image',
|
||||
input_doc_field='uri',
|
||||
output_modality='text',
|
||||
output_doc_field='text',
|
||||
test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
test_out='> Hello, world!_',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
# main(
|
||||
# executor_name='MySentimentAnalyzer',
|
||||
# executor_description="Sentiment analysis executor",
|
||||
# input_modality='text',
|
||||
# input_doc_field='text',
|
||||
# output_modality='sentiment',
|
||||
# output_doc_field='sentiment_label',
|
||||
# test_in='This is a fantastic product! I love it!',
|
||||
# test_out='positive',
|
||||
# do_validation=False
|
||||
# )
|
||||
#
|
||||
#
|
||||
# def get_all_executor_files_with_content(folder_path):
|
||||
# file_name_to_content = {}
|
||||
# for filename in os.listdir(folder_path):
|
||||
# file_path = os.path.join(folder_path, filename)
|
||||
#
|
||||
# if os.path.isfile(file_path):
|
||||
# with open(file_path, 'r', encoding='utf-8') as file:
|
||||
# content = file.read()
|
||||
# file_name_to_content[filename] = content
|
||||
#
|
||||
# return file_name_to_content
|
||||
#
|
||||
#
|
||||
#
|
||||
#
|
||||
# def build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
# output_doc_field, output_modality, test_in, test_out):
|
||||
# system_definition = (
|
||||
# system_base_definition
|
||||
# + "The user is asking you to create an executor with all the necessary files "
|
||||
# "and you write the complete code without leaving something out. "
|
||||
# )
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
# output_modality, output_doc_field)
|
||||
# + test_executor_file_task(executor_name, test_in, test_out)
|
||||
# + requirements_file_task()
|
||||
# + docker_file_task()
|
||||
# + client_file_task()
|
||||
# + streamlit_file_task()
|
||||
# + chain_of_thought_creation()
|
||||
# )
|
||||
# plain_text = gpt.get_response(system_definition, user_query)
|
||||
# return plain_text
|
||||
#
|
||||
#
|
||||
# def build_production_ready_implementation(all_executor_files_string):
|
||||
# system_definition = (
|
||||
# system_base_definition
|
||||
# + f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
||||
# f"The files may contain bugs. Fix all of them. "
|
||||
#
|
||||
# )
|
||||
# user_query = (
|
||||
# 'Make it production ready. '
|
||||
# "Fix all files and add all missing code. "
|
||||
# "Keep the same format as given to you. "
|
||||
# f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
# f"Some imports might be missing. Make sure to add them. "
|
||||
# f"Some libraries might be missing from the requirements.txt. Make sure to install them."
|
||||
# f"Somthing might be wrong in the Dockerfile. For example, some libraries might be missing. Install them."
|
||||
# f"Or not all files are copied to the right destination in the Dockerfile. Copy them to the correct destination. "
|
||||
# "First write down an extensive list of obvious and non-obvious observations about the parts that could need an adjustment. Explain why. "
|
||||
# "Think about if all the changes are required and finally decide for the changes you want to make. "
|
||||
# f"Output all the files even the ones that did not change. "
|
||||
# "Here are the files: \n\n"
|
||||
# + all_executor_files_string
|
||||
# )
|
||||
# all_executor_files_string_improved = gpt.get_response(system_definition, user_query)
|
||||
# print('DIFFERENCES:', find_differences(all_executor_files_string, all_executor_files_string_improved))
|
||||
# return all_executor_files_string_improved
|
||||
#
|
||||
# def files_to_string(file_name_to_content):
|
||||
# all_executor_files_string = ''
|
||||
# for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
# all_executor_files_string += f'**{file_name}**\n'
|
||||
# all_executor_files_string += f'```{tag}\n'
|
||||
# all_executor_files_string += file_name_to_content[file_name]
|
||||
# all_executor_files_string += '\n```\n\n'
|
||||
# return all_executor_files_string
|
||||
#
|
||||
#
|
||||
# def main(
|
||||
# executor_name,
|
||||
# executor_description,
|
||||
# input_modality,
|
||||
# input_doc_field,
|
||||
# output_modality,
|
||||
# output_doc_field,
|
||||
# test_in,
|
||||
# test_out,
|
||||
# do_validation=True
|
||||
# ):
|
||||
# recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
# recreate_folder(EXECUTOR_FOLDER_v2)
|
||||
# recreate_folder('flow')
|
||||
#
|
||||
# all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
# output_doc_field, output_modality, test_in, test_out)
|
||||
# extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
||||
# write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
# file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
||||
# all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
||||
#
|
||||
# all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
||||
# extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
||||
# write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
# jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
# host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
#
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
||||
#
|
||||
# if do_validation:
|
||||
# importlib.import_module("executor_v1.client")
|
||||
#
|
||||
# return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
#
|
||||
# if __name__ == '__main__':
|
||||
# # ######### Level 2 task #########
|
||||
# # main(
|
||||
# # executor_name='My3DTo2DExecutor',
|
||||
# # executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
# # input_modality='3d',
|
||||
# # input_doc_field='blob',
|
||||
# # output_modality='image',
|
||||
# # output_doc_field='blob',
|
||||
# # test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
# # test_out='the output should be exactly one image in png format',
|
||||
# # do_validation=False
|
||||
# # )
|
||||
#
|
||||
# ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_name='MyCoolOcrExecutor',
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# input_doc_field='uri',
|
||||
# output_modality='text',
|
||||
# output_doc_field='text',
|
||||
# test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
# test_out='output should contain the string "Hello, world"',
|
||||
# do_validation=False
|
||||
# )
|
||||
#
|
||||
# # main(
|
||||
# # executor_name='MySentimentAnalyzer',
|
||||
# # executor_description="Sentiment analysis executor",
|
||||
# # input_modality='text',
|
||||
# # input_doc_field='text',
|
||||
# # output_modality='sentiment',
|
||||
# # output_doc_field='sentiment_label',
|
||||
# # test_in='This is a fantastic product! I love it!',
|
||||
# # test_out='positive',
|
||||
# # do_validation=False
|
||||
# # )
|
||||
106
micro_chain.py
Normal file
106
micro_chain.py
Normal file
@@ -0,0 +1,106 @@
|
||||
import random
|
||||
|
||||
from main import extract_content_from_result, write_config_yml
|
||||
from src import gpt, jina_cloud
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \
|
||||
chain_of_thought_optimization, requirements_file_task, docker_file_task
|
||||
from src.utils.io import recreate_folder, persist_file
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
|
||||
def wrap_content_in_code_block(executor_content, file_name, tag):
|
||||
return f'**{file_name}**\n```{tag}\n{executor_content}\n```\n\n'
|
||||
|
||||
|
||||
def main(
|
||||
executor_description,
|
||||
input_modality,
|
||||
# input_doc_field,
|
||||
output_modality,
|
||||
# output_doc_field,
|
||||
test_scenario,
|
||||
do_validation=True
|
||||
):
|
||||
input_doc_field = 'text' if input_modality == 'text' else 'blob'
|
||||
output_doc_field = 'text' if output_modality == 'text' else 'blob'
|
||||
# random integer at the end of the executor name to avoid name clashes
|
||||
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
||||
recreate_folder('executor')
|
||||
recreate_folder('flow')
|
||||
|
||||
print_colored('', '############# Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
output_modality, output_doc_field)
|
||||
+ chain_of_thought_creation()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
executor_content_raw = conversation.query(chain_of_thought_optimization('python', 'executor.py'))
|
||||
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
|
||||
persist_file(executor_content, 'executor.py')
|
||||
|
||||
print_colored('', '############# Test Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ test_executor_file_task(executor_name, test_scenario)
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
test_executor_content_raw = conversation.query(
|
||||
chain_of_thought_optimization('python', 'test_executor.py')
|
||||
+ "Don't add any additional tests. "
|
||||
)
|
||||
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
|
||||
persist_file(test_executor_content, 'test_executor.py')
|
||||
|
||||
print_colored('', '############# Requirements #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ requirements_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
requirements_content_raw = conversation.query(chain_of_thought_optimization('', 'requirements.txt'))
|
||||
|
||||
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
|
||||
persist_file(requirements_content, 'requirements.txt')
|
||||
|
||||
print_colored('', '############# Dockerfile #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
|
||||
+ docker_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
dockerfile_content_raw = conversation.query(chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
|
||||
persist_file(dockerfile_content, 'Dockerfile')
|
||||
|
||||
write_config_yml(executor_name, 'executor')
|
||||
|
||||
jina_cloud.push_executor('executor')
|
||||
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
|
||||
# create playgorund and client.py
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
######## Level 1 task #########
|
||||
main(
|
||||
executor_description="OCR detector",
|
||||
input_modality='image',
|
||||
# input_doc_field='blob',
|
||||
output_modality='text',
|
||||
# output_doc_field='text',
|
||||
test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
|
||||
do_validation=False
|
||||
)
|
||||
134
server.py
134
server.py
@@ -1,67 +1,67 @@
|
||||
from fastapi import FastAPI
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from pydantic import BaseModel, HttpUrl
|
||||
from typing import Optional, Dict
|
||||
|
||||
from starlette.middleware.cors import CORSMiddleware
|
||||
from starlette.requests import Request
|
||||
from starlette.responses import JSONResponse
|
||||
|
||||
from main import main
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
# Define the request model
|
||||
class CreateRequest(BaseModel):
|
||||
executor_name: str
|
||||
executor_description: str
|
||||
input_modality: str
|
||||
input_doc_field: str
|
||||
output_modality: str
|
||||
output_doc_field: str
|
||||
test_in: str
|
||||
test_out: str
|
||||
|
||||
# Define the response model
|
||||
class CreateResponse(BaseModel):
|
||||
result: Dict[str, str]
|
||||
success: bool
|
||||
message: Optional[str]
|
||||
|
||||
@app.post("/create", response_model=CreateResponse)
|
||||
def create_endpoint(request: CreateRequest):
|
||||
|
||||
result = main(
|
||||
executor_name=request.executor_name,
|
||||
executor_description=request.executor_description,
|
||||
input_modality=request.input_modality,
|
||||
input_doc_field=request.input_doc_field,
|
||||
output_modality=request.output_modality,
|
||||
output_doc_field=request.output_doc_field,
|
||||
test_in=request.test_in,
|
||||
test_out=request.test_out,
|
||||
do_validation=False
|
||||
)
|
||||
return CreateResponse(result=result, success=True, message=None)
|
||||
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# Add a custom exception handler for RequestValidationError
|
||||
@app.exception_handler(RequestValidationError)
|
||||
def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
return JSONResponse(
|
||||
status_code=422,
|
||||
content={"detail": exc.errors()},
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
|
||||
# from fastapi import FastAPI
|
||||
# from fastapi.exceptions import RequestValidationError
|
||||
# from pydantic import BaseModel, HttpUrl
|
||||
# from typing import Optional, Dict
|
||||
#
|
||||
# from starlette.middleware.cors import CORSMiddleware
|
||||
# from starlette.requests import Request
|
||||
# from starlette.responses import JSONResponse
|
||||
#
|
||||
# from main import main
|
||||
#
|
||||
# app = FastAPI()
|
||||
#
|
||||
# # Define the request model
|
||||
# class CreateRequest(BaseModel):
|
||||
# executor_name: str
|
||||
# executor_description: str
|
||||
# input_modality: str
|
||||
# input_doc_field: str
|
||||
# output_modality: str
|
||||
# output_doc_field: str
|
||||
# test_in: str
|
||||
# test_out: str
|
||||
#
|
||||
# # Define the response model
|
||||
# class CreateResponse(BaseModel):
|
||||
# result: Dict[str, str]
|
||||
# success: bool
|
||||
# message: Optional[str]
|
||||
#
|
||||
# @app.post("/create", response_model=CreateResponse)
|
||||
# def create_endpoint(request: CreateRequest):
|
||||
#
|
||||
# result = main(
|
||||
# executor_name=request.executor_name,
|
||||
# executor_description=request.executor_description,
|
||||
# input_modality=request.input_modality,
|
||||
# input_doc_field=request.input_doc_field,
|
||||
# output_modality=request.output_modality,
|
||||
# output_doc_field=request.output_doc_field,
|
||||
# test_in=request.test_in,
|
||||
# test_out=request.test_out,
|
||||
# do_validation=False
|
||||
# )
|
||||
# return CreateResponse(result=result, success=True, message=None)
|
||||
#
|
||||
#
|
||||
# app.add_middleware(
|
||||
# CORSMiddleware,
|
||||
# allow_origins=["*"],
|
||||
# allow_credentials=True,
|
||||
# allow_methods=["*"],
|
||||
# allow_headers=["*"],
|
||||
# )
|
||||
#
|
||||
# # Add a custom exception handler for RequestValidationError
|
||||
# @app.exception_handler(RequestValidationError)
|
||||
# def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
# return JSONResponse(
|
||||
# status_code=422,
|
||||
# content={"detail": exc.errors()},
|
||||
# )
|
||||
#
|
||||
#
|
||||
# if __name__ == "__main__":
|
||||
# import uvicorn
|
||||
# uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
|
||||
|
||||
43
src/gpt.py
43
src/gpt.py
@@ -1,36 +1,44 @@
|
||||
import os
|
||||
from time import sleep
|
||||
from typing import Union, List, Tuple
|
||||
|
||||
import openai
|
||||
from openai.error import RateLimitError, Timeout
|
||||
|
||||
from src.utils.io import timeout_generator_wrapper
|
||||
from src.prompt_system import system_base_definition
|
||||
from src.utils.io import timeout_generator_wrapper, GenerationTimeoutError
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||
|
||||
def get_response(system_definition, user_query):
|
||||
print_colored('system_definition', system_definition, 'magenta')
|
||||
print_colored('user_query', user_query, 'blue')
|
||||
|
||||
class Conversation:
|
||||
def __init__(self):
|
||||
self.prompt_list = [('system', system_base_definition)]
|
||||
print_colored('system', system_base_definition, 'magenta')
|
||||
|
||||
def query(self, prompt: str):
|
||||
print_colored('user', prompt, 'blue')
|
||||
self.prompt_list.append(('user', prompt))
|
||||
response = get_response(self.prompt_list)
|
||||
self.prompt_list.append(('assistant', response))
|
||||
return response
|
||||
|
||||
|
||||
def get_response(prompt_list: List[Tuple[str, str]]):
|
||||
for i in range(10):
|
||||
try:
|
||||
response_generator = openai.ChatCompletion.create(
|
||||
temperature=0,
|
||||
max_tokens=5_000,
|
||||
max_tokens=4_000,
|
||||
model="gpt-4",
|
||||
stream=True,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_definition
|
||||
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content":
|
||||
user_query
|
||||
},
|
||||
|
||||
"role": prompt[0],
|
||||
"content": prompt[1]
|
||||
}
|
||||
for prompt in prompt_list
|
||||
]
|
||||
)
|
||||
response_generator_with_timeout = timeout_generator_wrapper(response_generator, 5)
|
||||
@@ -40,10 +48,11 @@ def get_response(system_definition, user_query):
|
||||
delta = chunk['choices'][0]['delta']
|
||||
if 'content' in delta:
|
||||
content = delta['content']
|
||||
print_colored('' if complete_string else 'Agent response:', content, 'green', end='')
|
||||
print_colored('' if complete_string else 'assistent', content, 'green', end='')
|
||||
complete_string += content
|
||||
print('\n')
|
||||
return complete_string
|
||||
except (RateLimitError, Timeout, ConnectionError) as e:
|
||||
except (RateLimitError, Timeout, ConnectionError, GenerationTimeoutError) as e:
|
||||
print(e)
|
||||
print('retrying')
|
||||
sleep(3)
|
||||
|
||||
@@ -9,7 +9,7 @@ from src.constants import FLOW_URL_PLACEHOLDER
|
||||
|
||||
|
||||
def push_executor(dir_path):
|
||||
cmd = f'jina hub push {dir_path}/. --verbose'
|
||||
cmd = f'jina hub push {dir_path}/. --verbose --replay'
|
||||
os.system(cmd)
|
||||
|
||||
def get_user_name():
|
||||
|
||||
@@ -1,31 +1,34 @@
|
||||
from src.constants import FLOW_URL_PLACEHOLDER
|
||||
|
||||
executor_example = "Here is an example of how an executor can be defined. It always starts with a comment:"
|
||||
'''
|
||||
executor_example = '''
|
||||
Using the Jina framework, users can define executors.
|
||||
Here is an example of how an executor can be defined. It always starts with a comment:
|
||||
|
||||
# this executor takes ... as input and returns ... as output
|
||||
# it processes each document in the following way: ...
|
||||
**executor.py**
|
||||
```python
|
||||
# this executor binary files as input and returns the length of each binary file as output
|
||||
from jina import Executor, requests, DocumentArray, Document
|
||||
class MyInfoExecutor(Executor):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
@requests
|
||||
@requests(on='/process') # this decorator is needed for every executor endpoint
|
||||
def foo(self, docs: DocumentArray, **kwargs) => DocumentArray:
|
||||
for d in docs:
|
||||
d.load_uri_to_blob()
|
||||
d.tags['my_info'] = {'byte_length': len(d.blob)}
|
||||
d.blob = None
|
||||
return docs
|
||||
'''
|
||||
"An executor gets a DocumentArray as input and returns a DocumentArray as output. "
|
||||
```
|
||||
|
||||
docarray_example = (
|
||||
"A DocumentArray is a python class that can be seen as a list of Documents. "
|
||||
"A Document is a python class that represents a single document. "
|
||||
"Here is the protobuf definition of a Document: "
|
||||
An executor gets a DocumentArray as input and returns a DocumentArray as output.
|
||||
'''
|
||||
|
||||
docarray_example = '''
|
||||
A DocumentArray is a python class that can be seen as a list of Documents.
|
||||
A Document is a python class that represents a single document.
|
||||
Here is the protobuf definition of a Document:
|
||||
|
||||
message DocumentProto {
|
||||
// A hexdigest that represents a unique document ID
|
||||
string id = 1;
|
||||
@@ -57,9 +60,8 @@ message DocumentProto {
|
||||
google.protobuf.Struct tags = 9;
|
||||
|
||||
}
|
||||
'''
|
||||
"Here is an example of how a DocumentArray can be defined: "
|
||||
'''
|
||||
|
||||
Here is an example of how a DocumentArray can be defined:
|
||||
|
||||
from jina import DocumentArray, Document
|
||||
|
||||
@@ -82,25 +84,27 @@ docs = DocumentArray([
|
||||
# For instance, d4.load_uri_to_blob() downloads the file from d4.uri and stores it in d4.blob.
|
||||
# If d4.uri was something like 'https://website.web/img.jpg', then d4.blob would be something like b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01...
|
||||
'''
|
||||
)
|
||||
|
||||
client_example = (
|
||||
"After the executor is deployed, it can be called via Jina Client. "
|
||||
"Here is an example of a client file: "
|
||||
f'''
|
||||
|
||||
client_example = f'''
|
||||
After the executor is deployed, it can be called via Jina Client.
|
||||
Here is an example of a client file:
|
||||
|
||||
**client.py**
|
||||
```python
|
||||
from jina import Client, Document, DocumentArray
|
||||
client = Client(host='{FLOW_URL_PLACEHOLDER}')
|
||||
d = Document(uri='data/img.png')
|
||||
d.load_uri_to_blob()
|
||||
response = client.post('/process', inputs=DocumentArray([d]))
|
||||
response[0].summary()
|
||||
''')
|
||||
```
|
||||
'''
|
||||
|
||||
|
||||
system_base_definition = (
|
||||
"You are a principal engineer working at Jina - an open source company."
|
||||
"Using the Jina framework, users can define executors. "
|
||||
+ executor_example
|
||||
+ docarray_example
|
||||
+ client_example
|
||||
)
|
||||
system_base_definition = f'''
|
||||
You are a principal engineer working at Jina - an open source company."
|
||||
{executor_example}
|
||||
{docarray_example}
|
||||
{client_example}
|
||||
'''
|
||||
@@ -11,8 +11,6 @@ def general_guidelines():
|
||||
"Then all imports are listed. "
|
||||
"It is important to import all modules that could be needed in the executor code. "
|
||||
"Always import: "
|
||||
"from typing import Dict, List, Optional, Tuple, Union "
|
||||
"from io import BytesIO "
|
||||
"from jina import Executor, DocumentArray, Document, requests "
|
||||
"Start from top-level and then fully implement all methods. "
|
||||
"\n"
|
||||
@@ -21,7 +19,7 @@ def general_guidelines():
|
||||
|
||||
def _task(task, tag_name, file_name):
|
||||
return (
|
||||
task + f"The code will go into {file_name}. Wrap the code is wrapped into:\n"
|
||||
task + f"The code will go into {file_name}. Wrap the code into:\n"
|
||||
f"**{file_name}**\n"
|
||||
f"```{tag_name}\n"
|
||||
f"...code...\n"
|
||||
@@ -31,12 +29,15 @@ def _task(task, tag_name, file_name):
|
||||
|
||||
def executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
output_modality, output_doc_field):
|
||||
return _task(
|
||||
f"Write the executor called '{executor_name}'. "
|
||||
f"It matches the following description: '{executor_description}'. "
|
||||
f"It gets a DocumentArray as input where each document has the input modality '{input_modality}' that is stored in document.{input_doc_field}. "
|
||||
f"It returns a DocumentArray as output where each document has the output modality '{output_modality}' that is stored in document.{output_doc_field}. "
|
||||
f"Have in mind that d.uri is never a path to a local file. It is always a url.",
|
||||
return _task(f'''
|
||||
Write the executor called '{executor_name}'.
|
||||
It matches the following description: '{executor_description}'.
|
||||
It gets a DocumentArray as input where each document has the input modality '{input_modality}' and can be accessed via document.{input_doc_field}.
|
||||
It returns a DocumentArray as output where each document has the output modality '{output_modality}' that is stored in document.{output_doc_field}.
|
||||
Have in mind that d.uri is never a path to a local file. It is always a url.
|
||||
The executor is not allowed to use the GPU.
|
||||
The executor is not allowed to access external apis.
|
||||
''',
|
||||
EXECUTOR_FILE_TAG,
|
||||
EXECUTOR_FILE_NAME
|
||||
)
|
||||
@@ -46,19 +47,21 @@ def requirements_file_task():
|
||||
return _task(
|
||||
"Write the content of the requirements.txt file. "
|
||||
"Make sure to include pytest. "
|
||||
"All versions are fixed. ",
|
||||
"Make sure that jina==3.14.1. "
|
||||
"All versions are fixed using ~=, ==, <, >, <=, >=. The package versions should not have conflicts. ",
|
||||
REQUIREMENTS_FILE_TAG,
|
||||
REQUIREMENTS_FILE_NAME
|
||||
)
|
||||
|
||||
|
||||
def test_executor_file_task(executor_name, test_in, test_out):
|
||||
def test_executor_file_task(executor_name, test_scenario):
|
||||
return _task(
|
||||
"Write a small unit test for the executor. "
|
||||
"Start the test with an extensive comment about the test case. "
|
||||
+ ((
|
||||
"Test that the executor converts the input '" + test_in + "' to the output '" + test_out + "'. "
|
||||
) if test_in and test_out else "")
|
||||
+ (
|
||||
f"Write a single test case that tests the following scenario: '{test_scenario}'. "
|
||||
if test_scenario else ""
|
||||
)
|
||||
+ "Use the following import to import the executor: "
|
||||
f"from executor import {executor_name} ",
|
||||
TEST_EXECUTOR_FILE_TAG,
|
||||
@@ -72,6 +75,7 @@ def docker_file_task():
|
||||
"The Dockerfile runs the test during the build process. "
|
||||
"It is important to make sure that all libs are installed that are required by the python packages. "
|
||||
"Usually libraries are installed with apt-get. "
|
||||
"Be aware that the machine the docker container is running on does not have a GPU - only CPU. "
|
||||
"Add the config.yml file to the Dockerfile. "
|
||||
"The base image of the Dockerfile is FROM jinaai/jina:3.14.1-py39-standard. "
|
||||
'The entrypoint is ENTRYPOINT ["jina", "executor", "--uses", "config.yml"] '
|
||||
@@ -95,3 +99,26 @@ def streamlit_file_task():
|
||||
STREAMLIT_FILE_TAG,
|
||||
STREAMLIT_FILE_NAME
|
||||
)
|
||||
|
||||
|
||||
def chain_of_thought_creation():
|
||||
return (
|
||||
"First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
||||
"For example, there are different libraries you could use. "
|
||||
"Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
||||
"Then write as I told you. "
|
||||
)
|
||||
|
||||
|
||||
def chain_of_thought_optimization(tag_name, file_name):
|
||||
return _task(
|
||||
f'First, write down an extensive list of obvious and non-obvious observations about {file_name} that could need an adjustment. Explain why. '
|
||||
f"Think if all the changes are required and finally decide for the changes you want to make, "
|
||||
f"but you are not allowed disregard the instructions in the previous message. "
|
||||
f"Be very hesitant to change the code. Only make a change if you are sure that it is necessary. "
|
||||
|
||||
f"Output only {file_name} "
|
||||
f"Write the whole content of {file_name} - even if you decided to change only a small thing or even nothing. ",
|
||||
tag_name,
|
||||
file_name
|
||||
)
|
||||
|
||||
@@ -9,6 +9,10 @@ def recreate_folder(folder_path):
|
||||
shutil.rmtree(folder_path)
|
||||
os.makedirs(folder_path)
|
||||
|
||||
def persist_file(file_content, file_name):
|
||||
with open(f'executor/{file_name}', 'w') as f:
|
||||
f.write(file_content)
|
||||
|
||||
|
||||
class GenerationTimeoutError(Exception):
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user