Files
Tutorial-Codebase-Knowledge/docs/NumPy Core/index.md
2025-04-04 13:48:54 -04:00

35 lines
1.6 KiB
Markdown

---
layout: default
title: "NumPy Core"
nav_order: 15
has_children: true
---
# Tutorial: NumPy Core
NumPy provides the powerful **ndarray** object, a *multi-dimensional grid* optimized for numerical computations on large datasets. It uses **dtypes** (data type objects) to precisely define the *kind of data* (like integers or floating-point numbers) stored within an array, ensuring memory efficiency and enabling optimized low-level operations. NumPy also features **ufuncs** (universal functions), which are functions like `add` or `sin` designed to operate *element-wise* on entire arrays very quickly, leveraging compiled code. Together, these components form the foundation for high-performance scientific computing in Python.
**Source Repository:** [https://github.com/numpy/numpy/tree/3b377854e8b1a55f15bda6f1166fe9954828231b/numpy/_core](https://github.com/numpy/numpy/tree/3b377854e8b1a55f15bda6f1166fe9954828231b/numpy/_core)
```mermaid
flowchart TD
A0["ndarray (N-dimensional array)"]
A1["dtype (Data Type Object)"]
A2["ufunc (Universal Function)"]
A3["multiarray Module"]
A4["umath Module"]
A5["Numeric Types"]
A6["Array Printing"]
A7["__array_function__ Protocol / Overrides"]
A0 -- "Has data type" --> A1
A2 -- "Operates element-wise on" --> A0
A3 -- "Provides implementation for" --> A0
A4 -- "Provides implementation for" --> A2
A5 -- "Defines scalar types for" --> A1
A6 -- "Formats for display" --> A0
A6 -- "Uses for formatting info" --> A1
A7 -- "Overrides functions from" --> A3
A7 -- "Overrides functions from" --> A4
A1 -- "References type hierarchy" --> A5
```