mirror of
https://github.com/aljazceru/Tutorial-Codebase-Knowledge.git
synced 2025-12-19 07:24:20 +01:00
37 lines
1.7 KiB
Markdown
37 lines
1.7 KiB
Markdown
---
|
|
layout: default
|
|
title: "NumPy Core"
|
|
nav_order: 15
|
|
has_children: true
|
|
---
|
|
|
|
# Tutorial: NumPy Core
|
|
|
|
> This tutorial is AI-generated! To learn more: https://github.com/The-Pocket/Tutorial-Codebase-Knowledge
|
|
|
|
NumPy provides the powerful **ndarray** object, a *multi-dimensional grid* optimized for numerical computations on large datasets. It uses **dtypes** (data type objects) to precisely define the *kind of data* (like integers or floating-point numbers) stored within an array, ensuring memory efficiency and enabling optimized low-level operations. NumPy also features **ufuncs** (universal functions), which are functions like `add` or `sin` designed to operate *element-wise* on entire arrays very quickly, leveraging compiled code. Together, these components form the foundation for high-performance scientific computing in Python.
|
|
|
|
|
|
**Source Repository:** [https://github.com/numpy/numpy/tree/3b377854e8b1a55f15bda6f1166fe9954828231b/numpy/_core](https://github.com/numpy/numpy/tree/3b377854e8b1a55f15bda6f1166fe9954828231b/numpy/_core)
|
|
|
|
```mermaid
|
|
flowchart TD
|
|
A0["ndarray (N-dimensional array)"]
|
|
A1["dtype (Data Type Object)"]
|
|
A2["ufunc (Universal Function)"]
|
|
A3["multiarray Module"]
|
|
A4["umath Module"]
|
|
A5["Numeric Types"]
|
|
A6["Array Printing"]
|
|
A7["__array_function__ Protocol / Overrides"]
|
|
A0 -- "Has data type" --> A1
|
|
A2 -- "Operates element-wise on" --> A0
|
|
A3 -- "Provides implementation for" --> A0
|
|
A4 -- "Provides implementation for" --> A2
|
|
A5 -- "Defines scalar types for" --> A1
|
|
A6 -- "Formats for display" --> A0
|
|
A6 -- "Uses for formatting info" --> A1
|
|
A7 -- "Overrides functions from" --> A3
|
|
A7 -- "Overrides functions from" --> A4
|
|
A1 -- "References type hierarchy" --> A5
|
|
``` |