mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8cc278447e | ||
|
|
38cd62010c | ||
|
|
1cc288af39 | ||
|
|
a851168633 | ||
|
|
1ffeecd0ca |
@@ -943,7 +943,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
|
||||
|
||||
# Create a dataloader directly.
|
||||
dataloader = create_image_embedding_dataloader(
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
|
||||
num_workers=4,
|
||||
batch_size=32,
|
||||
@@ -1097,7 +1097,7 @@ This library would not have gotten to this working state without the help of
|
||||
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
|
||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
|
||||
@@ -83,7 +83,7 @@ Defines which evaluation metrics will be used to test the model.
|
||||
Each metric can be enabled by setting its configuration. The configuration keys for each metric are defined by the torchmetrics constructors which will be linked.
|
||||
| Option | Required | Default | Description |
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `n_evalation_samples` | No | `1000` | The number of samples to generate to test the model. |
|
||||
| `n_evaluation_samples` | No | `1000` | The number of samples to generate to test the model. |
|
||||
| `FID` | No | `None` | Setting to an object enables the [Frechet Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html) metric.
|
||||
| `IS` | No | `None` | Setting to an object enables the [Inception Score](https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html) metric.
|
||||
| `KID` | No | `None` | Setting to an object enables the [Kernel Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html) metric. |
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import math
|
||||
import random
|
||||
from tqdm import tqdm
|
||||
from inspect import isfunction
|
||||
from functools import partial, wraps
|
||||
@@ -1676,7 +1677,7 @@ class LowresConditioner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
downsample_first = True,
|
||||
blur_sigma = 0.1,
|
||||
blur_sigma = (0.1, 0.2),
|
||||
blur_kernel_size = 3,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1700,6 +1701,18 @@ class LowresConditioner(nn.Module):
|
||||
# when training, blur the low resolution conditional image
|
||||
blur_sigma = default(blur_sigma, self.blur_sigma)
|
||||
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
|
||||
|
||||
# allow for drawing a random sigma between lo and hi float values
|
||||
if isinstance(blur_sigma, tuple):
|
||||
blur_sigma = tuple(map(float, blur_sigma))
|
||||
blur_sigma = random.uniform(*blur_sigma)
|
||||
|
||||
# allow for drawing a random kernel size between lo and hi int values
|
||||
if isinstance(blur_kernel_size, tuple):
|
||||
blur_kernel_size = tuple(map(int, blur_kernel_size))
|
||||
kernel_size_lo, kernel_size_hi = blur_kernel_size
|
||||
blur_kernel_size = random.randrange(kernel_size_lo, kernel_size_hi + 1)
|
||||
|
||||
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
||||
|
||||
cond_fmap = resize_image_to(cond_fmap, target_image_size)
|
||||
@@ -1725,7 +1738,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
image_sizes = None, # for cascading ddpm, image size at each stage
|
||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||
blur_sigma = 0.1, # cascading ddpm - blur sigma
|
||||
blur_sigma = (0.1, 0.2), # cascading ddpm - blur sigma
|
||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
|
||||
clip_denoised = True,
|
||||
|
||||
@@ -15,7 +15,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
|
||||
|
||||
# Create a dataloader directly.
|
||||
dataloader = create_image_embedding_dataloader(
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
|
||||
num_workers=4,
|
||||
batch_size=32,
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
# to give users a quick easy start to training DALL-E without doing BPE
|
||||
|
||||
import torch
|
||||
import youtokentome as yttm
|
||||
|
||||
import html
|
||||
import os
|
||||
@@ -11,6 +10,8 @@ import regex as re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# OpenAI simple tokenizer
|
||||
|
||||
@lru_cache()
|
||||
@@ -156,7 +157,9 @@ class YttmTokenizer:
|
||||
bpe_path = Path(bpe_path)
|
||||
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
|
||||
|
||||
tokenizer = yttm.BPE(model = str(bpe_path))
|
||||
self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`')
|
||||
|
||||
tokenizer = self.yttm.BPE(model = str(bpe_path))
|
||||
self.tokenizer = tokenizer
|
||||
self.vocab_size = tokenizer.vocab_size()
|
||||
|
||||
@@ -167,7 +170,7 @@ class YttmTokenizer:
|
||||
return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0}))
|
||||
|
||||
def encode(self, texts):
|
||||
encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID)
|
||||
encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID)
|
||||
return list(map(torch.tensor, encoded))
|
||||
|
||||
def tokenize(self, texts, context_length = 256, truncate_text = False):
|
||||
|
||||
@@ -6,6 +6,8 @@ from itertools import zip_longest
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# constants
|
||||
|
||||
DEFAULT_DATA_PATH = './.tracker-data'
|
||||
@@ -15,14 +17,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
# load state dict functions
|
||||
|
||||
def load_wandb_state_dict(run_path, file_path, **kwargs):
|
||||
|
||||
@@ -178,7 +178,7 @@ class EMA(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
beta = 0.9999,
|
||||
beta = 0.99,
|
||||
update_after_step = 1000,
|
||||
update_every = 10,
|
||||
):
|
||||
|
||||
@@ -17,3 +17,13 @@ class Timer:
|
||||
def print_ribbon(s, symbol = '=', repeat = 40):
|
||||
flank = symbol * repeat
|
||||
return f'{flank} {s} {flank}'
|
||||
|
||||
# import helpers
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.6.4'
|
||||
__version__ = '0.6.8'
|
||||
|
||||
Reference in New Issue
Block a user