mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
48 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4b994601ae | ||
|
|
fddf66e91e | ||
|
|
c8422ffd5d | ||
|
|
2aadc23c7c | ||
|
|
c098f57e09 | ||
|
|
0021535c26 | ||
|
|
56883910fb | ||
|
|
893f270012 | ||
|
|
f545ce18f4 | ||
|
|
fc7abf624d | ||
|
|
67f0740777 | ||
|
|
138079ca83 | ||
|
|
f5a906f5d3 | ||
|
|
0215237fc6 | ||
|
|
461b91c5c1 | ||
|
|
58892135d9 | ||
|
|
e37072a48c | ||
|
|
41ca896413 | ||
|
|
fe19b508ca | ||
|
|
6651eafa93 | ||
|
|
e6bb75e5ab | ||
|
|
b4c3e5b854 | ||
|
|
b7f9607258 | ||
|
|
2219348a6e | ||
|
|
9eea9b9862 | ||
|
|
5d958713c0 | ||
|
|
0f31980362 | ||
|
|
bee5bf3815 | ||
|
|
350a3d6045 | ||
|
|
1a81670718 | ||
|
|
934c9728dc | ||
|
|
ce4b0107c1 | ||
|
|
64c2f9c4eb | ||
|
|
22cc613278 | ||
|
|
83517849e5 | ||
|
|
708809ed6c | ||
|
|
9cc475f6e7 | ||
|
|
ffd342e9d0 | ||
|
|
f8bfd3493a | ||
|
|
9025345e29 | ||
|
|
8cc278447e | ||
|
|
38cd62010c | ||
|
|
1cc288af39 | ||
|
|
a851168633 | ||
|
|
1ffeecd0ca | ||
|
|
3df899f7a4 | ||
|
|
09534119a1 | ||
|
|
6f8b90d4d7 |
84
README.md
84
README.md
@@ -27,10 +27,27 @@ As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lu
|
||||
- <a href="https://twitter.com/Buntworthy/status/1529475416775434240?t=0GEge3Kr9I36cjcUVCQUTg">Justin Pinkney</a> successfully trained the diffusion prior in the repository for his CLIP to Stylegan2 text-to-image application
|
||||
|
||||
## Pre-Trained Models
|
||||
|
||||
- LAION is training prior models. Checkpoints are available on <a href="https://huggingface.co/zenglishuci/conditioned-prior">🤗huggingface</a> and the training statistics are available on <a href="https://wandb.ai/nousr_laion/conditioned-prior/reports/LAION-DALLE2-PyTorch-Prior--VmlldzoyMDI2OTIx">🐝WANDB</a>.
|
||||
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/jkrtg0so?workspace=user-veldrovive">In-progress test run</a> 🚧
|
||||
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/3d5rytsa?workspace=">Another test run with sparse attention</a>
|
||||
- DALL-E 2 🚧
|
||||
|
||||
## Appreciation
|
||||
|
||||
This library would not have gotten to this working state without the help of
|
||||
|
||||
- <a href="https://github.com/nousr">Zion</a> for the distributed training code for the diffusion prior
|
||||
- <a href="https://github.com/Veldrovive">Aidan</a> for the distributed training code for the decoder as well as the dataloaders
|
||||
- <a href="https://github.com/krish240574">Kumar</a> for working on the initial diffusion training script
|
||||
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
|
||||
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
|
||||
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
||||
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
|
||||
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
|
||||
|
||||
... and many others. Thank you! 🙏
|
||||
|
||||
## Install
|
||||
|
||||
```bash
|
||||
@@ -943,7 +960,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
|
||||
|
||||
# Create a dataloader directly.
|
||||
dataloader = create_image_embedding_dataloader(
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
|
||||
num_workers=4,
|
||||
batch_size=32,
|
||||
@@ -1000,33 +1017,6 @@ The most significant parameters for the script are as follows:
|
||||
|
||||
- `clip`, default = `None` # Signals the prior to use pre-computed embeddings
|
||||
|
||||
#### Loading and Saving the DiffusionPrior model
|
||||
|
||||
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
|
||||
|
||||
```python
|
||||
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model
|
||||
```
|
||||
|
||||
##### Loading
|
||||
|
||||
load_diffusion_model(dprior_path, device)
|
||||
dprior_path : path to saved model(.pth)
|
||||
device : the cuda device you're running on
|
||||
|
||||
##### Saving
|
||||
|
||||
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
|
||||
save_path : path to save at
|
||||
model : object of Diffusion_Prior
|
||||
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
|
||||
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
|
||||
scaler : a GradScaler object.
|
||||
e.g: scaler = GradScaler(enabled=amp)
|
||||
config : config object created in train_diffusion_prior.py - see file for example.
|
||||
image_embed_dim - the dimension of the image_embedding
|
||||
e.g: 768
|
||||
|
||||
## CLI (wip)
|
||||
|
||||
```bash
|
||||
@@ -1041,19 +1031,6 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
|
||||
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
|
||||
|
||||
## Appreciation
|
||||
|
||||
This library would not have gotten to this working state without the help of
|
||||
|
||||
- <a href="https://github.com/nousr">Zion</a> and <a href="https://github.com/krish240574">Kumar</a> for the diffusion training script
|
||||
- <a href="https://github.com/Veldrovive">Aidan</a> for the decoder training script and dataloaders
|
||||
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
|
||||
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
|
||||
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
||||
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
|
||||
|
||||
... and many others. Thank you! 🙏
|
||||
|
||||
## Todo
|
||||
|
||||
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
||||
@@ -1088,19 +1065,14 @@ This library would not have gotten to this working state without the help of
|
||||
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
|
||||
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||
- [x] allow for creation of diffusion prior model off pydantic config classes - consider the same for tracker configs
|
||||
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
|
||||
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
|
||||
- [ ] train on a toy task, offer in colab
|
||||
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
|
||||
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
|
||||
- [ ] speed up inference, read up on papers (ddim or diffusion-gan, etc)
|
||||
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
|
||||
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
|
||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||
- [ ] decoder needs one day worth of refactor for tech debt
|
||||
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
|
||||
- [ ] build infilling
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -1207,4 +1179,14 @@ This library would not have gotten to this working state without the help of
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Choi2022PerceptionPT,
|
||||
title = {Perception Prioritized Training of Diffusion Models},
|
||||
author = {Jooyoung Choi and Jungbeom Lee and Chaehun Shin and Sungwon Kim and Hyunwoo J. Kim and Sung-Hoon Yoon},
|
||||
journal = {ArXiv},
|
||||
year = {2022},
|
||||
volume = {abs/2204.00227}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -83,7 +83,7 @@ Defines which evaluation metrics will be used to test the model.
|
||||
Each metric can be enabled by setting its configuration. The configuration keys for each metric are defined by the torchmetrics constructors which will be linked.
|
||||
| Option | Required | Default | Description |
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `n_evalation_samples` | No | `1000` | The number of samples to generate to test the model. |
|
||||
| `n_evaluation_samples` | No | `1000` | The number of samples to generate to test the model. |
|
||||
| `FID` | No | `None` | Setting to an object enables the [Frechet Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html) metric.
|
||||
| `IS` | No | `None` | Setting to an object enables the [Inception Score](https://torchmetrics.readthedocs.io/en/stable/image/inception_score.html) metric.
|
||||
| `KID` | No | `None` | Setting to an object enables the [Kernel Inception Distance](https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html) metric. |
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"channels": 3,
|
||||
"timesteps": 1000,
|
||||
"loss_type": "l2",
|
||||
"beta_schedule": "cosine",
|
||||
"beta_schedule": ["cosine"],
|
||||
"learned_variance": true
|
||||
},
|
||||
"data": {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import math
|
||||
import random
|
||||
from tqdm import tqdm
|
||||
from inspect import isfunction
|
||||
from functools import partial, wraps
|
||||
from contextlib import contextmanager
|
||||
from collections import namedtuple
|
||||
@@ -11,7 +11,7 @@ import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
import torchvision.transforms as T
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops import rearrange, repeat, reduce
|
||||
from einops.layers.torch import Rearrange
|
||||
from einops_exts import rearrange_many, repeat_many, check_shape
|
||||
from einops_exts.torch import EinopsToAndFrom
|
||||
@@ -56,7 +56,7 @@ def maybe(fn):
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
return d() if callable(d) else d
|
||||
|
||||
def cast_tuple(val, length = 1):
|
||||
if isinstance(val, list):
|
||||
@@ -313,11 +313,6 @@ def extract(a, t, x_shape):
|
||||
out = a.gather(-1, t)
|
||||
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
||||
|
||||
def meanflat(x):
|
||||
return x.mean(dim = tuple(range(1, len(x.shape))))
|
||||
|
||||
@@ -372,7 +367,7 @@ def quadratic_beta_schedule(timesteps):
|
||||
scale = 1000 / timesteps
|
||||
beta_start = scale * 0.0001
|
||||
beta_end = scale * 0.02
|
||||
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
|
||||
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype = torch.float64) ** 2
|
||||
|
||||
|
||||
def sigmoid_beta_schedule(timesteps):
|
||||
@@ -383,8 +378,8 @@ def sigmoid_beta_schedule(timesteps):
|
||||
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
|
||||
|
||||
class BaseGaussianDiffusion(nn.Module):
|
||||
def __init__(self, *, beta_schedule, timesteps, loss_type):
|
||||
class NoiseScheduler(nn.Module):
|
||||
def __init__(self, *, beta_schedule, timesteps, loss_type, p2_loss_weight_gamma = 0., p2_loss_weight_k = 1):
|
||||
super().__init__()
|
||||
|
||||
if beta_schedule == "cosine":
|
||||
@@ -449,6 +444,11 @@ class BaseGaussianDiffusion(nn.Module):
|
||||
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
|
||||
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
|
||||
|
||||
# p2 loss reweighting
|
||||
|
||||
self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0.
|
||||
register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma)
|
||||
|
||||
def q_posterior(self, x_start, x_t, t):
|
||||
posterior_mean = (
|
||||
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
||||
@@ -472,11 +472,10 @@ class BaseGaussianDiffusion(nn.Module):
|
||||
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
||||
)
|
||||
|
||||
def sample(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
def p2_reweigh_loss(self, loss, times):
|
||||
if not self.has_p2_loss_reweighting:
|
||||
return loss
|
||||
return loss * extract(self.p2_loss_weight, times, loss.shape)
|
||||
|
||||
# diffusion prior
|
||||
|
||||
@@ -687,8 +686,7 @@ class Attention(nn.Module):
|
||||
|
||||
# attention
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
# aggregate values
|
||||
@@ -862,7 +860,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
|
||||
return pred_image_embed
|
||||
|
||||
class DiffusionPrior(BaseGaussianDiffusion):
|
||||
class DiffusionPrior(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
net,
|
||||
@@ -883,7 +881,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
image_embed_scale = None, # this is for scaling the l2-normed image embedding, so it is more suitable for gaussian diffusion, as outlined by Katherine (@crowsonkb) https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
|
||||
clip_adapter_overrides = dict()
|
||||
):
|
||||
super().__init__(
|
||||
super().__init__()
|
||||
|
||||
self.noise_scheduler = NoiseScheduler(
|
||||
beta_schedule = beta_schedule,
|
||||
timesteps = timesteps,
|
||||
loss_type = loss_type
|
||||
@@ -923,6 +923,13 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
self.training_clamp_l2norm = training_clamp_l2norm
|
||||
self.init_image_embed_l2norm = init_image_embed_l2norm
|
||||
|
||||
# device tracker
|
||||
self.register_buffer('_dummy', torch.tensor([True]), persistent = False)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self._dummy.device
|
||||
|
||||
def p_mean_variance(self, x, t, text_cond, clip_denoised = False, cond_scale = 1.):
|
||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||
|
||||
@@ -933,7 +940,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
# not 100% sure of this above line - for any spectators, let me know in the github issues (or through a pull request) if you know how to correctly do this
|
||||
# i'll be rereading https://arxiv.org/abs/2111.14822, where i think a similar approach is taken
|
||||
else:
|
||||
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
|
||||
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
||||
|
||||
if clip_denoised and not self.predict_x_start:
|
||||
x_recon.clamp_(-1., 1.)
|
||||
@@ -941,21 +948,21 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
if self.predict_x_start and self.sampling_clamp_l2norm:
|
||||
x_recon = l2norm(x_recon) * self.image_embed_scale
|
||||
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
|
||||
def p_sample(self, x, t, text_cond = None, clip_denoised = True, cond_scale = 1.):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
|
||||
noise = noise_like(x.shape, device, repeat_noise)
|
||||
noise = torch.randn_like(x)
|
||||
# no noise when t == 0
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
|
||||
device = self.betas.device
|
||||
device = self.device
|
||||
|
||||
b = shape[0]
|
||||
image_embed = torch.randn(shape, device=device)
|
||||
@@ -963,7 +970,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
if self.init_image_embed_l2norm:
|
||||
image_embed = l2norm(image_embed) * self.image_embed_scale
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
|
||||
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps):
|
||||
times = torch.full((b,), i, device = device, dtype = torch.long)
|
||||
image_embed = self.p_sample(image_embed, times, text_cond = text_cond, cond_scale = cond_scale)
|
||||
|
||||
@@ -972,7 +979,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
def p_losses(self, image_embed, times, text_cond, noise = None):
|
||||
noise = default(noise, lambda: torch.randn_like(image_embed))
|
||||
|
||||
image_embed_noisy = self.q_sample(x_start = image_embed, t = times, noise = noise)
|
||||
image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise)
|
||||
|
||||
pred = self.net(
|
||||
image_embed_noisy,
|
||||
@@ -986,7 +993,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
|
||||
target = noise if not self.predict_x_start else image_embed
|
||||
|
||||
loss = self.loss_fn(pred, target)
|
||||
loss = self.noise_scheduler.loss_fn(pred, target)
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -997,7 +1004,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
|
||||
img = torch.randn(shape, device = device)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = self.noise_scheduler.num_timesteps):
|
||||
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
|
||||
return img
|
||||
|
||||
@@ -1069,7 +1076,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
# timestep conditioning from ddpm
|
||||
|
||||
batch, device = image_embed.shape[0], image_embed.device
|
||||
times = torch.randint(0, self.num_timesteps, (batch,), device = device, dtype = torch.long)
|
||||
times = torch.randint(0, self.noise_scheduler.num_timesteps, (batch,), device = device, dtype = torch.long)
|
||||
|
||||
# scale image embed (Katherine)
|
||||
|
||||
@@ -1084,8 +1091,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
def Upsample(dim):
|
||||
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
||||
|
||||
def Downsample(dim):
|
||||
return nn.Conv2d(dim, dim, 4, 2, 1)
|
||||
def Downsample(dim, *, dim_out = None):
|
||||
dim_out = default(dim_out, dim)
|
||||
return nn.Conv2d(dim, dim_out, 4, 2, 1)
|
||||
|
||||
class SinusoidalPosEmb(nn.Module):
|
||||
def __init__(self, dim):
|
||||
@@ -1233,8 +1241,7 @@ class CrossAttention(nn.Module):
|
||||
mask = rearrange(mask, 'b j -> b 1 1 j')
|
||||
sim = sim.masked_fill(~mask, max_neg_value)
|
||||
|
||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
||||
attn = sim.softmax(dim = -1)
|
||||
attn = sim.softmax(dim = -1, dtype = torch.float32)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
@@ -1351,6 +1358,7 @@ class Unet(nn.Module):
|
||||
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||
cross_embed_downsample = False,
|
||||
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||
memory_efficient = False,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1370,7 +1378,7 @@ class Unet(nn.Module):
|
||||
self.channels_out = default(channels_out, channels)
|
||||
|
||||
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
||||
init_dim = default(init_dim, dim // 3 * 2)
|
||||
init_dim = default(init_dim, dim)
|
||||
|
||||
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
|
||||
|
||||
@@ -1427,6 +1435,7 @@ class Unet(nn.Module):
|
||||
# for classifier free guidance
|
||||
|
||||
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
|
||||
self.null_image_hiddens = nn.Parameter(torch.randn(1, time_cond_dim))
|
||||
|
||||
self.max_text_len = max_text_len
|
||||
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
|
||||
@@ -1460,10 +1469,11 @@ class Unet(nn.Module):
|
||||
layer_cond_dim = cond_dim if not is_first else None
|
||||
|
||||
self.downs.append(nn.ModuleList([
|
||||
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
||||
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
|
||||
ResnetBlock(dim_out if memory_efficient else dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
|
||||
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
downsample_klass(dim_out) if not is_last else nn.Identity()
|
||||
downsample_klass(dim_out) if not is_last and not memory_efficient else None
|
||||
]))
|
||||
|
||||
mid_dim = dims[-1]
|
||||
@@ -1472,19 +1482,19 @@ class Unet(nn.Module):
|
||||
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
|
||||
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
|
||||
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out[1:]), reversed(resnet_groups), reversed(num_resnet_blocks))):
|
||||
is_last = ind >= (num_resolutions - 2)
|
||||
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks))):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
layer_cond_dim = cond_dim if not is_last else None
|
||||
|
||||
self.ups.append(nn.ModuleList([
|
||||
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
|
||||
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
|
||||
nn.ModuleList([ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
|
||||
Upsample(dim_in)
|
||||
Upsample(dim_in) if not is_last or memory_efficient else nn.Identity()
|
||||
]))
|
||||
|
||||
self.final_conv = nn.Sequential(
|
||||
ResnetBlock(dim, dim, groups = resnet_groups[0]),
|
||||
ResnetBlock(dim * 2, dim, groups = resnet_groups[0]),
|
||||
nn.Conv2d(dim, self.channels_out, 1)
|
||||
)
|
||||
|
||||
@@ -1556,6 +1566,7 @@ class Unet(nn.Module):
|
||||
# initial convolution
|
||||
|
||||
x = self.init_conv(x)
|
||||
r = x.clone() # final residual
|
||||
|
||||
# time conditioning
|
||||
|
||||
@@ -1564,19 +1575,28 @@ class Unet(nn.Module):
|
||||
time_tokens = self.to_time_tokens(time_hiddens)
|
||||
t = self.to_time_cond(time_hiddens)
|
||||
|
||||
# image embedding to be summed to time embedding
|
||||
# discovered by @mhh0318 in the paper
|
||||
|
||||
if exists(image_embed) and exists(self.to_image_hiddens):
|
||||
image_hiddens = self.to_image_hiddens(image_embed)
|
||||
t = t + image_hiddens
|
||||
|
||||
# conditional dropout
|
||||
|
||||
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
|
||||
text_keep_mask = prob_mask_like((batch_size,), 1 - text_cond_drop_prob, device = device)
|
||||
|
||||
image_keep_mask, text_keep_mask = rearrange_many((image_keep_mask, text_keep_mask), 'b -> b 1 1')
|
||||
text_keep_mask = rearrange(text_keep_mask, 'b -> b 1 1')
|
||||
|
||||
# image embedding to be summed to time embedding
|
||||
# discovered by @mhh0318 in the paper
|
||||
|
||||
if exists(image_embed) and exists(self.to_image_hiddens):
|
||||
image_hiddens = self.to_image_hiddens(image_embed)
|
||||
image_keep_mask_hidden = rearrange(image_keep_mask, 'b -> b 1')
|
||||
null_image_hiddens = self.null_image_hiddens.to(image_hiddens.dtype)
|
||||
|
||||
image_hiddens = torch.where(
|
||||
image_keep_mask_hidden,
|
||||
image_hiddens,
|
||||
null_image_hiddens
|
||||
)
|
||||
|
||||
t = t + image_hiddens
|
||||
|
||||
# mask out image embedding depending on condition dropout
|
||||
# for classifier free guidance
|
||||
@@ -1584,11 +1604,12 @@ class Unet(nn.Module):
|
||||
image_tokens = None
|
||||
|
||||
if self.cond_on_image_embeds:
|
||||
image_keep_mask_embed = rearrange(image_keep_mask, 'b -> b 1 1')
|
||||
image_tokens = self.image_to_tokens(image_embed)
|
||||
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
|
||||
|
||||
image_tokens = torch.where(
|
||||
image_keep_mask,
|
||||
image_keep_mask_embed,
|
||||
image_tokens,
|
||||
null_image_embed
|
||||
)
|
||||
@@ -1643,7 +1664,10 @@ class Unet(nn.Module):
|
||||
|
||||
hiddens = []
|
||||
|
||||
for init_block, sparse_attn, resnet_blocks, downsample in self.downs:
|
||||
for pre_downsample, init_block, sparse_attn, resnet_blocks, post_downsample in self.downs:
|
||||
if exists(pre_downsample):
|
||||
x = pre_downsample(x)
|
||||
|
||||
x = init_block(x, c, t)
|
||||
x = sparse_attn(x)
|
||||
|
||||
@@ -1651,7 +1675,9 @@ class Unet(nn.Module):
|
||||
x = resnet_block(x, c, t)
|
||||
|
||||
hiddens.append(x)
|
||||
x = downsample(x)
|
||||
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
|
||||
x = self.mid_block1(x, mid_c, t)
|
||||
|
||||
@@ -1661,7 +1687,7 @@ class Unet(nn.Module):
|
||||
x = self.mid_block2(x, mid_c, t)
|
||||
|
||||
for init_block, sparse_attn, resnet_blocks, upsample in self.ups:
|
||||
x = torch.cat((x, hiddens.pop()), dim=1)
|
||||
x = torch.cat((x, hiddens.pop()), dim = 1)
|
||||
x = init_block(x, c, t)
|
||||
x = sparse_attn(x)
|
||||
|
||||
@@ -1670,13 +1696,14 @@ class Unet(nn.Module):
|
||||
|
||||
x = upsample(x)
|
||||
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
return self.final_conv(x)
|
||||
|
||||
class LowresConditioner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
downsample_first = True,
|
||||
blur_sigma = 0.1,
|
||||
blur_sigma = 0.6,
|
||||
blur_kernel_size = 3,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -1700,13 +1727,25 @@ class LowresConditioner(nn.Module):
|
||||
# when training, blur the low resolution conditional image
|
||||
blur_sigma = default(blur_sigma, self.blur_sigma)
|
||||
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
|
||||
|
||||
# allow for drawing a random sigma between lo and hi float values
|
||||
if isinstance(blur_sigma, tuple):
|
||||
blur_sigma = tuple(map(float, blur_sigma))
|
||||
blur_sigma = random.uniform(*blur_sigma)
|
||||
|
||||
# allow for drawing a random kernel size between lo and hi int values
|
||||
if isinstance(blur_kernel_size, tuple):
|
||||
blur_kernel_size = tuple(map(int, blur_kernel_size))
|
||||
kernel_size_lo, kernel_size_hi = blur_kernel_size
|
||||
blur_kernel_size = random.randrange(kernel_size_lo, kernel_size_hi + 1)
|
||||
|
||||
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
||||
|
||||
cond_fmap = resize_image_to(cond_fmap, target_image_size)
|
||||
|
||||
return cond_fmap
|
||||
|
||||
class Decoder(BaseGaussianDiffusion):
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
unet,
|
||||
@@ -1719,30 +1758,29 @@ class Decoder(BaseGaussianDiffusion):
|
||||
image_cond_drop_prob = 0.1,
|
||||
text_cond_drop_prob = 0.5,
|
||||
loss_type = 'l2',
|
||||
beta_schedule = 'cosine',
|
||||
beta_schedule = None,
|
||||
predict_x_start = False,
|
||||
predict_x_start_for_latent_diffusion = False,
|
||||
image_sizes = None, # for cascading ddpm, image size at each stage
|
||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||
blur_sigma = 0.1, # cascading ddpm - blur sigma
|
||||
blur_sigma = (0.1, 0.2), # cascading ddpm - blur sigma
|
||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||
condition_on_text_encodings = False, # the paper suggested that this didn't do much in the decoder, but i'm allowing the option for experimentation
|
||||
clip_denoised = True,
|
||||
clip_x_start = True,
|
||||
clip_adapter_overrides = dict(),
|
||||
learned_variance = True,
|
||||
learned_variance_constrain_frac = False,
|
||||
vb_loss_weight = 0.001,
|
||||
unconditional = False,
|
||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||
use_dynamic_thres = False, # from the Imagen paper
|
||||
dynamic_thres_percentile = 0.9
|
||||
dynamic_thres_percentile = 0.9,
|
||||
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
||||
p2_loss_weight_k = 1
|
||||
):
|
||||
super().__init__(
|
||||
beta_schedule = beta_schedule,
|
||||
timesteps = timesteps,
|
||||
loss_type = loss_type
|
||||
)
|
||||
super().__init__()
|
||||
|
||||
self.unconditional = unconditional
|
||||
|
||||
@@ -1786,12 +1824,15 @@ class Decoder(BaseGaussianDiffusion):
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
|
||||
unets = cast_tuple(unet)
|
||||
num_unets = len(unets)
|
||||
|
||||
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
|
||||
|
||||
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper
|
||||
|
||||
learned_variance = pad_tuple_to_length(cast_tuple(learned_variance), len(unets), fillvalue = False)
|
||||
self.learned_variance = learned_variance
|
||||
self.learned_variance_constrain_frac = learned_variance_constrain_frac # whether to constrain the output of the network (the interpolation fraction) from 0 to 1
|
||||
self.vb_loss_weight = vb_loss_weight
|
||||
|
||||
# construct unets and vaes
|
||||
@@ -1820,6 +1861,27 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.unets.append(one_unet)
|
||||
self.vaes.append(one_vae.copy_for_eval())
|
||||
|
||||
# create noise schedulers per unet
|
||||
|
||||
if not exists(beta_schedule):
|
||||
beta_schedule = ('cosine', *(('cosine',) * max(num_unets - 2, 0)), *(('linear',) * int(num_unets > 1)))
|
||||
|
||||
beta_schedule = cast_tuple(beta_schedule, num_unets)
|
||||
p2_loss_weight_gamma = cast_tuple(p2_loss_weight_gamma, num_unets)
|
||||
|
||||
self.noise_schedulers = nn.ModuleList([])
|
||||
|
||||
for unet_beta_schedule, unet_p2_loss_weight_gamma in zip(beta_schedule, p2_loss_weight_gamma):
|
||||
noise_scheduler = NoiseScheduler(
|
||||
beta_schedule = unet_beta_schedule,
|
||||
timesteps = timesteps,
|
||||
loss_type = loss_type,
|
||||
p2_loss_weight_gamma = unet_p2_loss_weight_gamma,
|
||||
p2_loss_weight_k = p2_loss_weight_k
|
||||
)
|
||||
|
||||
self.noise_schedulers.append(noise_scheduler)
|
||||
|
||||
# unet image sizes
|
||||
|
||||
image_sizes = default(image_sizes, (image_size,))
|
||||
@@ -1869,6 +1931,14 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
||||
|
||||
# device tracker
|
||||
|
||||
self.register_buffer('_dummy', torch.Tensor([True]), persistent = False)
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self._dummy.device
|
||||
|
||||
def get_unet(self, unet_number):
|
||||
assert 0 < unet_number <= len(self.unets)
|
||||
index = unet_number - 1
|
||||
@@ -1892,7 +1962,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
for unet, device in zip(self.unets, devices):
|
||||
unet.to(device)
|
||||
|
||||
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
||||
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||
|
||||
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img))
|
||||
@@ -1903,7 +1973,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
if predict_x_start:
|
||||
x_recon = pred
|
||||
else:
|
||||
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
|
||||
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
|
||||
|
||||
if clip_denoised:
|
||||
# s is the threshold amount
|
||||
@@ -1922,33 +1992,36 @@ class Decoder(BaseGaussianDiffusion):
|
||||
# clip by threshold, depending on whether static or dynamic
|
||||
x_recon = x_recon.clamp(-s, s) / s
|
||||
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
|
||||
if learned_variance:
|
||||
# if learned variance, posterio variance and posterior log variance are predicted by the network
|
||||
# by an interpolation of the max and min log beta values
|
||||
# eq 15 - https://arxiv.org/abs/2102.09672
|
||||
min_log = extract(self.posterior_log_variance_clipped, t, x.shape)
|
||||
max_log = extract(torch.log(self.betas), t, x.shape)
|
||||
min_log = extract(noise_scheduler.posterior_log_variance_clipped, t, x.shape)
|
||||
max_log = extract(torch.log(noise_scheduler.betas), t, x.shape)
|
||||
var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized)
|
||||
|
||||
if self.learned_variance_constrain_frac:
|
||||
var_interp_frac = var_interp_frac.sigmoid()
|
||||
|
||||
posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log
|
||||
posterior_variance = posterior_log_variance.exp()
|
||||
|
||||
return model_mean, posterior_variance, posterior_log_variance
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
|
||||
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True):
|
||||
b, *_, device = *x.shape, x.device
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
|
||||
noise = noise_like(x.shape, device, repeat_noise)
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance)
|
||||
noise = torch.randn_like(x)
|
||||
# no noise when t == 0
|
||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
|
||||
device = self.betas.device
|
||||
def p_sample_loop(self, unet, shape, image_embed, noise_scheduler, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
|
||||
device = self.device
|
||||
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device = device)
|
||||
@@ -1956,7 +2029,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
if not is_latent_diffusion:
|
||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||
img = self.p_sample(
|
||||
unet,
|
||||
img,
|
||||
@@ -1967,6 +2040,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
cond_scale = cond_scale,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
predict_x_start = predict_x_start,
|
||||
noise_scheduler = noise_scheduler,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = clip_denoised
|
||||
)
|
||||
@@ -1974,7 +2048,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unnormalize_img = self.unnormalize_img(img)
|
||||
return unnormalize_img
|
||||
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
||||
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
|
||||
# normalize to [-1, 1]
|
||||
@@ -1985,7 +2059,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
# get x_t
|
||||
|
||||
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
|
||||
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
|
||||
|
||||
model_output = unet(
|
||||
x_noisy,
|
||||
@@ -2005,7 +2079,12 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
target = noise if not predict_x_start else x_start
|
||||
|
||||
loss = self.loss_fn(pred, target)
|
||||
loss = noise_scheduler.loss_fn(pred, target, reduction = 'none')
|
||||
loss = reduce(loss, 'b ... -> b (...)', 'mean')
|
||||
|
||||
loss = noise_scheduler.p2_reweigh_loss(loss, times)
|
||||
|
||||
loss = loss.mean()
|
||||
|
||||
if not learned_variance:
|
||||
# return simple loss if not using learned variance
|
||||
@@ -2018,8 +2097,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
|
||||
# if learning the variance, also include the extra weight kl loss
|
||||
|
||||
true_mean, _, true_log_variance_clipped = self.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
|
||||
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
|
||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
|
||||
|
||||
# kl loss with detached model predicted mean, for stability reasons as in paper
|
||||
|
||||
@@ -2051,7 +2130,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
text_encodings = None,
|
||||
batch_size = 1,
|
||||
cond_scale = 1.,
|
||||
stop_at_unet_number = None
|
||||
stop_at_unet_number = None,
|
||||
distributed = False,
|
||||
):
|
||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||
|
||||
@@ -2068,9 +2148,9 @@ class Decoder(BaseGaussianDiffusion):
|
||||
img = None
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance)):
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers)):
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||
|
||||
with context:
|
||||
lowres_cond_img = None
|
||||
@@ -2096,7 +2176,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = not is_latent_diffusion,
|
||||
lowres_cond_img = lowres_cond_img,
|
||||
is_latent_diffusion = is_latent_diffusion
|
||||
is_latent_diffusion = is_latent_diffusion,
|
||||
noise_scheduler = noise_scheduler
|
||||
)
|
||||
|
||||
img = vae.decode(img)
|
||||
@@ -2122,6 +2203,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
vae = self.vaes[unet_index]
|
||||
noise_scheduler = self.noise_schedulers[unet_index]
|
||||
target_image_size = self.image_sizes[unet_index]
|
||||
predict_x_start = self.predict_x_start[unet_index]
|
||||
random_crop_size = self.random_crop_sizes[unet_index]
|
||||
@@ -2131,7 +2213,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
check_shape(image, 'b c h w', c = self.channels)
|
||||
assert h >= target_image_size and w >= target_image_size
|
||||
|
||||
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
|
||||
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
|
||||
|
||||
if not exists(image_embed) and not self.unconditional:
|
||||
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
|
||||
@@ -2162,7 +2244,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
image = vae.encode(image)
|
||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion)
|
||||
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler)
|
||||
|
||||
# main class
|
||||
|
||||
|
||||
@@ -15,7 +15,7 @@ from dalle2_pytorch.dataloaders import ImageEmbeddingDataset, create_image_embed
|
||||
|
||||
# Create a dataloader directly.
|
||||
dataloader = create_image_embedding_dataloader(
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses braket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
tar_url="/path/or/url/to/webdataset/{0000..9999}.tar", # Uses bracket expanding notation. This specifies to read all tars from 0000.tar to 9999.tar
|
||||
embeddings_url="path/or/url/to/embeddings/folder", # Included if .npy files are not in webdataset. Left out or set to None otherwise
|
||||
num_workers=4,
|
||||
batch_size=32,
|
||||
|
||||
@@ -164,9 +164,6 @@ class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
|
||||
# There may be webdataset shards that do not have a embedding shard associated with it. If we do not skip these, they would cause issues.
|
||||
self.append(skip_unassociated_shards(embeddings_url=embedding_folder_url, handler=handler))
|
||||
|
||||
self.append(wds.split_by_node)
|
||||
self.append(wds.split_by_worker)
|
||||
|
||||
self.append(wds.tarfile_to_samples(handler=handler))
|
||||
self.append(wds.decode("pilrgb", handler=handler))
|
||||
if embedding_folder_url is not None:
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
from torch.optim import AdamW, Adam
|
||||
|
||||
def separate_weight_decayable_params(params):
|
||||
no_wd_params = set([param for param in params if param.ndim < 2])
|
||||
wd_params = set(params) - no_wd_params
|
||||
wd_params, no_wd_params = [], []
|
||||
for param in params:
|
||||
param_list = no_wd_params if param.ndim < 2 else wd_params
|
||||
param_list.append(param)
|
||||
return wd_params, no_wd_params
|
||||
|
||||
def get_optimizer(
|
||||
params,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
betas = (0.9, 0.999),
|
||||
betas = (0.9, 0.99),
|
||||
eps = 1e-8,
|
||||
filter_by_requires_grad = False,
|
||||
group_wd_params = True,
|
||||
@@ -25,8 +27,8 @@ def get_optimizer(
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
{'params': wd_params},
|
||||
{'params': no_wd_params, 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
# to give users a quick easy start to training DALL-E without doing BPE
|
||||
|
||||
import torch
|
||||
import youtokentome as yttm
|
||||
|
||||
import html
|
||||
import os
|
||||
@@ -11,6 +10,8 @@ import regex as re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# OpenAI simple tokenizer
|
||||
|
||||
@lru_cache()
|
||||
@@ -156,7 +157,9 @@ class YttmTokenizer:
|
||||
bpe_path = Path(bpe_path)
|
||||
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
|
||||
|
||||
tokenizer = yttm.BPE(model = str(bpe_path))
|
||||
self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`')
|
||||
|
||||
tokenizer = self.yttm.BPE(model = str(bpe_path))
|
||||
self.tokenizer = tokenizer
|
||||
self.vocab_size = tokenizer.vocab_size()
|
||||
|
||||
@@ -167,7 +170,7 @@ class YttmTokenizer:
|
||||
return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0}))
|
||||
|
||||
def encode(self, texts):
|
||||
encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID)
|
||||
encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID)
|
||||
return list(map(torch.tensor, encoded))
|
||||
|
||||
def tokenize(self, texts, context_length = 256, truncate_text = False):
|
||||
|
||||
@@ -6,6 +6,8 @@ from itertools import zip_longest
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# constants
|
||||
|
||||
DEFAULT_DATA_PATH = './.tracker-data'
|
||||
@@ -15,23 +17,15 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
# load file functions
|
||||
|
||||
# load state dict functions
|
||||
|
||||
def load_wandb_state_dict(run_path, file_path, **kwargs):
|
||||
def load_wandb_file(run_path, file_path, **kwargs):
|
||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
||||
return torch.load(file_reference.name)
|
||||
return file_reference.name
|
||||
|
||||
def load_local_state_dict(file_path, **kwargs):
|
||||
return torch.load(file_path)
|
||||
def load_local_file(file_path, **kwargs):
|
||||
return file_path
|
||||
|
||||
# base class
|
||||
|
||||
@@ -61,12 +55,43 @@ class BaseTracker(nn.Module):
|
||||
"""
|
||||
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
|
||||
if recall_source == 'wandb':
|
||||
return load_wandb_state_dict(*args, **kwargs)
|
||||
return torch.load(load_wandb_file(*args, **kwargs))
|
||||
elif recall_source == 'local':
|
||||
return load_local_state_dict(*args, **kwargs)
|
||||
return torch.load(load_local_file(*args, **kwargs))
|
||||
else:
|
||||
raise ValueError('`recall_source` must be one of `wandb` or `local`')
|
||||
|
||||
def save_file(self, file_path, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def recall_file(self, recall_source, *args, **kwargs):
|
||||
if recall_source == 'wandb':
|
||||
return load_wandb_file(*args, **kwargs)
|
||||
elif recall_source == 'local':
|
||||
return load_local_file(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError('`recall_source` must be one of `wandb` or `local`')
|
||||
|
||||
# Tracker that no-ops all calls except for recall
|
||||
|
||||
class DummyTracker(BaseTracker):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def init(self, config, **kwargs):
|
||||
pass
|
||||
|
||||
def log(self, log, **kwargs):
|
||||
pass
|
||||
|
||||
def log_images(self, images, **kwargs):
|
||||
pass
|
||||
|
||||
def save_state_dict(self, state_dict, relative_path, **kwargs):
|
||||
pass
|
||||
|
||||
def save_file(self, file_path, **kwargs):
|
||||
pass
|
||||
|
||||
# basic stdout class
|
||||
|
||||
@@ -82,6 +107,10 @@ class ConsoleTracker(BaseTracker):
|
||||
|
||||
def save_state_dict(self, state_dict, relative_path, **kwargs):
|
||||
torch.save(state_dict, str(self.data_path / relative_path))
|
||||
|
||||
def save_file(self, file_path, **kwargs):
|
||||
# This is a no-op for local file systems since it is already saved locally
|
||||
pass
|
||||
|
||||
# basic wandb class
|
||||
|
||||
@@ -113,3 +142,11 @@ class WandbTracker(BaseTracker):
|
||||
full_path = str(self.data_path / relative_path)
|
||||
torch.save(state_dict, full_path)
|
||||
self.wandb.save(full_path, base_path = str(self.data_path)) # Upload and keep relative to data_path
|
||||
|
||||
def save_file(self, file_path, base_path=None, **kwargs):
|
||||
"""
|
||||
Uploads a file from disk to wandb
|
||||
"""
|
||||
if base_path is None:
|
||||
base_path = self.data_path
|
||||
self.wandb.save(str(file_path), base_path = str(base_path))
|
||||
|
||||
@@ -173,7 +173,7 @@ class DecoderConfig(BaseModel):
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: str = 'cosine'
|
||||
beta_schedule: ListOrTuple(str) = 'cosine'
|
||||
learned_variance: bool = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
@@ -261,6 +261,7 @@ class TrainDecoderConfig(BaseModel):
|
||||
evaluate: DecoderEvaluateConfig
|
||||
tracker: TrackerConfig
|
||||
load: DecoderLoadConfig
|
||||
seed: int = 0
|
||||
|
||||
@classmethod
|
||||
def from_json_path(cls, json_path):
|
||||
|
||||
@@ -14,6 +14,10 @@ from dalle2_pytorch.optimizer import get_optimizer
|
||||
from dalle2_pytorch.version import __version__
|
||||
from packaging import version
|
||||
|
||||
from ema_pytorch import EMA
|
||||
|
||||
from accelerate import Accelerator
|
||||
|
||||
import numpy as np
|
||||
|
||||
# helper functions
|
||||
@@ -22,7 +26,9 @@ def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if callable(d) else d
|
||||
|
||||
def cast_tuple(val, length = 1):
|
||||
return val if isinstance(val, tuple) else ((val,) * length)
|
||||
@@ -58,9 +64,6 @@ def num_to_groups(num, divisor):
|
||||
arr.append(remainder)
|
||||
return arr
|
||||
|
||||
def get_pkg_version():
|
||||
return __version__
|
||||
|
||||
# decorators
|
||||
|
||||
def cast_torch_tensor(fn):
|
||||
@@ -134,105 +137,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
|
||||
chunk_size_frac = chunk_size / batch_size
|
||||
yield chunk_size_frac, (chunked_args, chunked_kwargs)
|
||||
|
||||
# saving and loading functions
|
||||
|
||||
# for diffusion prior
|
||||
|
||||
def load_diffusion_model(dprior_path, device):
|
||||
dprior_path = Path(dprior_path)
|
||||
assert dprior_path.exists(), 'Dprior model file does not exist'
|
||||
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
|
||||
|
||||
# Get hyperparameters of loaded model
|
||||
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
|
||||
dp_config = loaded_obj['hparams']['diffusion_prior']
|
||||
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
|
||||
|
||||
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
|
||||
|
||||
# DiffusionPriorNetwork
|
||||
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
|
||||
|
||||
# DiffusionPrior with text embeddings and image embeddings pre-computed
|
||||
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
|
||||
|
||||
# Load state dict from saved model
|
||||
diffusion_prior.load_state_dict(loaded_obj['model'])
|
||||
|
||||
return diffusion_prior, loaded_obj
|
||||
|
||||
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
|
||||
# Saving State Dict
|
||||
print_ribbon('Saving checkpoint')
|
||||
|
||||
state_dict = dict(model=model.state_dict(),
|
||||
optimizer=optimizer.state_dict(),
|
||||
scaler=scaler.state_dict(),
|
||||
hparams = config,
|
||||
image_embed_dim = {"image_embed_dim":image_embed_dim})
|
||||
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
|
||||
|
||||
# exponential moving average wrapper
|
||||
|
||||
class EMA(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
beta = 0.9999,
|
||||
update_after_step = 1000,
|
||||
update_every = 10,
|
||||
):
|
||||
super().__init__()
|
||||
self.beta = beta
|
||||
self.online_model = model
|
||||
self.ema_model = copy.deepcopy(model)
|
||||
|
||||
self.update_every = update_every
|
||||
self.update_after_step = update_after_step // update_every # only start EMA after this step number, starting at 0
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([False]))
|
||||
self.register_buffer('step', torch.tensor([0]))
|
||||
|
||||
def restore_ema_model_device(self):
|
||||
device = self.initted.device
|
||||
self.ema_model.to(device)
|
||||
|
||||
def copy_params_from_model_to_ema(self):
|
||||
self.ema_model.state_dict(self.online_model.state_dict())
|
||||
|
||||
def update(self):
|
||||
self.step += 1
|
||||
|
||||
if (self.step % self.update_every) != 0:
|
||||
return
|
||||
|
||||
if self.step <= self.update_after_step:
|
||||
self.copy_params_from_model_to_ema()
|
||||
return
|
||||
|
||||
if not self.initted:
|
||||
self.copy_params_from_model_to_ema()
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
self.update_moving_average(self.ema_model, self.online_model)
|
||||
|
||||
def update_moving_average(self, ma_model, current_model):
|
||||
def calculate_ema(beta, old, new):
|
||||
if not exists(old):
|
||||
return new
|
||||
return old * beta + (1 - beta) * new
|
||||
|
||||
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||||
old_weight, up_weight = ma_params.data, current_params.data
|
||||
ma_params.data = calculate_ema(self.beta, old_weight, up_weight)
|
||||
|
||||
for current_buffer, ma_buffer in zip(current_model.buffers(), ma_model.buffers()):
|
||||
new_buffer_value = calculate_ema(self.beta, ma_buffer, current_buffer)
|
||||
ma_buffer.copy_(new_buffer_value)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.ema_model(*args, **kwargs)
|
||||
|
||||
# diffusion prior trainer
|
||||
|
||||
def prior_sample_in_chunks(fn):
|
||||
@@ -256,88 +160,189 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
device = None,
|
||||
accelerator = None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
assert isinstance(diffusion_prior, DiffusionPrior)
|
||||
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
|
||||
assert exists(accelerator) or exists(device), "You must supply some method of obtaining a device."
|
||||
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
||||
|
||||
# assign some helpful member vars
|
||||
self.accelerator = accelerator
|
||||
self.device = accelerator.device if exists(accelerator) else device
|
||||
self.text_conditioned = diffusion_prior.condition_on_text_encodings
|
||||
|
||||
# save model
|
||||
|
||||
self.diffusion_prior = diffusion_prior
|
||||
|
||||
# exponential moving average
|
||||
|
||||
self.use_ema = use_ema
|
||||
if self.use_ema:
|
||||
self.ema_diffusion_prior = EMA(diffusion_prior, **ema_kwargs)
|
||||
|
||||
# optimizer and mixed precision stuff
|
||||
|
||||
self.amp = amp
|
||||
|
||||
self.scaler = GradScaler(enabled = amp)
|
||||
|
||||
self.optim_kwargs = dict(lr=lr, wd=wd, eps=eps, group_wd_params=group_wd_params)
|
||||
|
||||
self.optimizer = get_optimizer(
|
||||
diffusion_prior.parameters(),
|
||||
lr = lr,
|
||||
wd = wd,
|
||||
eps = eps,
|
||||
group_wd_params = group_wd_params,
|
||||
self.diffusion_prior.parameters(),
|
||||
**self.optim_kwargs,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
# distribute the model if using HFA
|
||||
if exists(self.accelerator):
|
||||
self.diffusion_prior, self.optimizer = self.accelerator.prepare(self.diffusion_prior, self.optimizer)
|
||||
|
||||
# exponential moving average stuff
|
||||
|
||||
self.use_ema = use_ema
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_diffusion_prior = EMA(self.unwrap_model(self.diffusion_prior), **ema_kwargs)
|
||||
|
||||
# gradient clipping if needed
|
||||
|
||||
self.max_grad_norm = max_grad_norm
|
||||
|
||||
# track steps internally
|
||||
|
||||
self.register_buffer('step', torch.tensor([0]))
|
||||
|
||||
# accelerator wrappers
|
||||
|
||||
def print(self, msg):
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.print(msg)
|
||||
else:
|
||||
print(msg)
|
||||
|
||||
def unwrap_model(self, model):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.unwrap_model(model)
|
||||
else:
|
||||
return model
|
||||
|
||||
def wait_for_everyone(self):
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.wait_for_everyone()
|
||||
|
||||
def is_main_process(self):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.is_main_process
|
||||
else:
|
||||
return True
|
||||
|
||||
def clip_grad_norm_(self, *args):
|
||||
if exists(self.accelerator):
|
||||
return self.accelerator.clip_grad_norm_(*args)
|
||||
else:
|
||||
return torch.nn.utils.clip_grad_norm_(*args)
|
||||
|
||||
def backprop(self, x):
|
||||
if exists(self.accelerator):
|
||||
self.accelerator.backward(x)
|
||||
else:
|
||||
try:
|
||||
x.backward()
|
||||
except Exception as e:
|
||||
self.print(f"Caught error in backprop call: {e}")
|
||||
|
||||
# utility
|
||||
|
||||
def save(self, path, overwrite = True, **kwargs):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
# ensure we sync gradients before continuing
|
||||
self.wait_for_everyone()
|
||||
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.diffusion_prior.state_dict(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
# only save on the main process
|
||||
if self.is_main_process():
|
||||
self.print(f"Saving checkpoint at step: {self.step.item()}")
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
|
||||
save_obj = dict(
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.unwrap_model(self.diffusion_prior).state_dict(), # unwrap the model from distribution if applicable
|
||||
version = version.parse(__version__),
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
if self.use_ema:
|
||||
save_obj = {
|
||||
**save_obj,
|
||||
'ema': self.ema_diffusion_prior.state_dict(),
|
||||
'ema_model': self.ema_diffusion_prior.ema_model.state_dict() # save the ema model specifically for easy ema-only reload
|
||||
}
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
torch.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, overwrite_lr = True, strict = True):
|
||||
"""
|
||||
Load a checkpoint of a diffusion prior trainer.
|
||||
|
||||
Will load the entire trainer, including the optimizer and EMA.
|
||||
|
||||
Params:
|
||||
- path (str): a path to the DiffusionPriorTrainer checkpoint file
|
||||
- overwrite_lr (bool): wether or not to overwrite the stored LR with the LR specified in the new trainer
|
||||
- strict (bool): kwarg for `torch.nn.Module.load_state_dict`, will force an exact checkpoint match
|
||||
|
||||
Returns:
|
||||
loaded_obj (dict): The loaded checkpoint dictionary
|
||||
"""
|
||||
|
||||
# all processes need to load checkpoint. no restriction here
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
loaded_obj = torch.load(str(path), map_location=self.device)
|
||||
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
|
||||
|
||||
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
# unwrap the model when loading from checkpoint
|
||||
self.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
|
||||
if only_model:
|
||||
return loaded_obj
|
||||
|
||||
self.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
|
||||
if overwrite_lr:
|
||||
new_lr = self.optim_kwargs["lr"]
|
||||
|
||||
self.print(f"Overriding LR to be {new_lr}")
|
||||
|
||||
for group in self.optimizer.param_groups:
|
||||
group["lr"] = new_lr
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
|
||||
# below not be necessary, but I had a suspicion that this wasn't being loaded correctly
|
||||
self.ema_diffusion_prior.ema_model.load_state_dict(loaded_obj["ema_model"])
|
||||
|
||||
# sync and inform
|
||||
self.wait_for_everyone()
|
||||
self.print(f"Loaded model")
|
||||
|
||||
return loaded_obj
|
||||
|
||||
# model functionality
|
||||
|
||||
def update(self):
|
||||
# only continue with updates until all ranks finish
|
||||
self.wait_for_everyone()
|
||||
|
||||
if exists(self.max_grad_norm):
|
||||
self.scaler.unscale_(self.optimizer)
|
||||
nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
|
||||
# utilize HFA clipping where applicable
|
||||
self.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
|
||||
|
||||
self.scaler.step(self.optimizer)
|
||||
self.scaler.update()
|
||||
@@ -352,17 +357,26 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def p_sample_loop(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
|
||||
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
|
||||
return model.p_sample_loop(*args, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def sample(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
|
||||
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
|
||||
return model.sample(*args, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_batch_size(self, *args, **kwargs):
|
||||
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
|
||||
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
|
||||
return model.sample_batch_size(*args, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
@cast_torch_tensor
|
||||
@prior_sample_in_chunks
|
||||
def embed_text(self, *args, **kwargs):
|
||||
return self.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
|
||||
|
||||
@cast_torch_tensor
|
||||
def forward(
|
||||
@@ -380,8 +394,10 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
# backprop with accelerate if applicable
|
||||
|
||||
if self.training:
|
||||
self.scaler.scale(loss).backward()
|
||||
self.backprop(self.scaler.scale(loss))
|
||||
|
||||
return total_loss
|
||||
|
||||
@@ -407,6 +423,7 @@ class DecoderTrainer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
decoder,
|
||||
accelerator = None,
|
||||
use_ema = True,
|
||||
lr = 1e-4,
|
||||
wd = 1e-2,
|
||||
@@ -420,8 +437,9 @@ class DecoderTrainer(nn.Module):
|
||||
assert isinstance(decoder, Decoder)
|
||||
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
||||
|
||||
self.decoder = decoder
|
||||
self.num_unets = len(self.decoder.unets)
|
||||
self.accelerator = default(accelerator, Accelerator)
|
||||
|
||||
self.num_unets = len(decoder.unets)
|
||||
|
||||
self.use_ema = use_ema
|
||||
self.ema_unets = nn.ModuleList([])
|
||||
@@ -433,7 +451,11 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
|
||||
|
||||
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
|
||||
assert all([unet_lr < 1e-3 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4'
|
||||
|
||||
optimizers = []
|
||||
|
||||
for unet, unet_lr, unet_wd, unet_eps in zip(decoder.unets, lr, wd, eps):
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
@@ -443,67 +465,66 @@ class DecoderTrainer(nn.Module):
|
||||
**kwargs
|
||||
)
|
||||
|
||||
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
|
||||
optimizers.append(optimizer)
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
||||
|
||||
scaler = GradScaler(enabled = amp)
|
||||
setattr(self, f'scaler{ind}', scaler)
|
||||
|
||||
# gradient clipping if needed
|
||||
|
||||
self.max_grad_norm = max_grad_norm
|
||||
|
||||
self.register_buffer('step', torch.tensor([0.]))
|
||||
|
||||
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
|
||||
|
||||
self.decoder = decoder
|
||||
|
||||
for opt_ind, optimizer in zip(range(len(optimizers)), optimizers):
|
||||
setattr(self, f'optim{opt_ind}', optimizer)
|
||||
|
||||
def save(self, path, overwrite = True, **kwargs):
|
||||
path = Path(path)
|
||||
assert not (path.exists() and not overwrite)
|
||||
path.parent.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
save_obj = dict(
|
||||
model = self.decoder.state_dict(),
|
||||
model = self.accelerator.unwrap_model(self.decoder).state_dict(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
|
||||
for ind in range(0, self.num_unets):
|
||||
scaler_key = f'scaler{ind}'
|
||||
optimizer_key = f'scaler{ind}'
|
||||
scaler = getattr(self, scaler_key)
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
|
||||
save_obj = {**save_obj, optimizer_key: self.accelerator.unwrap_model(optimizer).state_dict()}
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
||||
|
||||
torch.save(save_obj, str(path))
|
||||
self.accelerator.save(save_obj, str(path))
|
||||
|
||||
def load(self, path, only_model = False, strict = True):
|
||||
path = Path(path)
|
||||
assert path.exists()
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
loaded_obj = torch.load(str(path), map_location = 'cpu')
|
||||
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
|
||||
if version.parse(__version__) != version.parse(loaded_obj['version']):
|
||||
self.accelerator.print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
|
||||
|
||||
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.accelerator.unwrap_model(self.decoder).load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
|
||||
if only_model:
|
||||
return loaded_obj
|
||||
|
||||
for ind in range(0, self.num_unets):
|
||||
scaler_key = f'scaler{ind}'
|
||||
optimizer_key = f'scaler{ind}'
|
||||
scaler = getattr(self, scaler_key)
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
|
||||
scaler.load_state_dict(loaded_obj[scaler_key])
|
||||
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
||||
self.accelerator.unwrap_model(optimizer).load_state_dict(loaded_obj[optimizer_key])
|
||||
|
||||
if self.use_ema:
|
||||
assert 'ema' in loaded_obj
|
||||
@@ -515,29 +536,18 @@ class DecoderTrainer(nn.Module):
|
||||
def unets(self):
|
||||
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
||||
|
||||
def scale(self, loss, *, unet_number):
|
||||
assert 1 <= unet_number <= self.num_unets
|
||||
index = unet_number - 1
|
||||
scaler = getattr(self, f'scaler{index}')
|
||||
return scaler.scale(loss)
|
||||
|
||||
def update(self, unet_number = None):
|
||||
if self.num_unets == 1:
|
||||
unet_number = default(unet_number, 1)
|
||||
|
||||
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
|
||||
index = unet_number - 1
|
||||
unet = self.decoder.unets[index]
|
||||
|
||||
optimizer = getattr(self, f'optim{index}')
|
||||
scaler = getattr(self, f'scaler{index}')
|
||||
|
||||
if exists(self.max_grad_norm):
|
||||
scaler.unscale_(optimizer)
|
||||
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
self.accelerator.clip_grad_norm_(self.decoder.parameters(), self.max_grad_norm) # Automatically unscales gradients
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if self.use_ema:
|
||||
@@ -550,15 +560,17 @@ class DecoderTrainer(nn.Module):
|
||||
@cast_torch_tensor
|
||||
@decoder_sample_in_chunks
|
||||
def sample(self, *args, **kwargs):
|
||||
distributed = self.accelerator.num_processes > 1
|
||||
base_decoder = self.accelerator.unwrap_model(self.decoder)
|
||||
if kwargs.pop('use_non_ema', False) or not self.use_ema:
|
||||
return self.decoder.sample(*args, **kwargs)
|
||||
return base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
|
||||
trainable_unets = self.decoder.unets
|
||||
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
|
||||
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
|
||||
output = self.decoder.sample(*args, **kwargs)
|
||||
output = base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
|
||||
self.decoder.unets = trainable_unets # restore original training unets
|
||||
base_decoder.unets = trainable_unets # restore original training unets
|
||||
|
||||
# cast the ema_model unets back to original device
|
||||
for ema in self.ema_unets:
|
||||
@@ -580,13 +592,14 @@ class DecoderTrainer(nn.Module):
|
||||
total_loss = 0.
|
||||
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||
with autocast(enabled = self.amp):
|
||||
# with autocast(enabled = self.amp):
|
||||
with self.accelerator.autocast():
|
||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||
loss = loss * chunk_size_frac
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if self.training:
|
||||
self.scale(loss, unet_number = unet_number).backward()
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
return total_loss
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import time
|
||||
import importlib
|
||||
|
||||
# time helpers
|
||||
|
||||
@@ -17,3 +18,13 @@ class Timer:
|
||||
def print_ribbon(s, symbol = '=', repeat = 40):
|
||||
flank = symbol * repeat
|
||||
return f'{flank} {s} {flank}'
|
||||
|
||||
# import helpers
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.6.2'
|
||||
__version__ = '0.11.5'
|
||||
|
||||
@@ -68,8 +68,8 @@ def group_dict_by_key(cond, d):
|
||||
return_val[ind][key] = d[key]
|
||||
return (*return_val,)
|
||||
|
||||
def string_begins_with(prefix, str):
|
||||
return str.startswith(prefix)
|
||||
def string_begins_with(prefix, string_input):
|
||||
return string_input.startswith(prefix)
|
||||
|
||||
def group_by_key_prefix(prefix, d):
|
||||
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
||||
|
||||
@@ -16,10 +16,11 @@ from torchvision.utils import make_grid, save_image
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from dalle2_pytorch.train import EMA
|
||||
from dalle2_pytorch.vqgan_vae import VQGanVAE
|
||||
from dalle2_pytorch.optimizer import get_optimizer
|
||||
|
||||
from ema_pytorch import EMA
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(val):
|
||||
@@ -97,7 +98,7 @@ class VQGanVAETrainer(nn.Module):
|
||||
valid_frac = 0.05,
|
||||
random_split_seed = 42,
|
||||
ema_beta = 0.995,
|
||||
ema_update_after_step = 2000,
|
||||
ema_update_after_step = 500,
|
||||
ema_update_every = 10,
|
||||
apply_grad_penalty_every = 4,
|
||||
amp = False
|
||||
|
||||
4
setup.py
4
setup.py
@@ -24,14 +24,17 @@ setup(
|
||||
'text to image'
|
||||
],
|
||||
install_requires=[
|
||||
'accelerate',
|
||||
'click',
|
||||
'clip-anytorch',
|
||||
'coca-pytorch>=0.0.5',
|
||||
'ema-pytorch>=0.0.7',
|
||||
'einops>=0.4',
|
||||
'einops-exts>=0.0.3',
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'packaging',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'resize-right>=0.0.2',
|
||||
@@ -41,7 +44,6 @@ setup(
|
||||
'tqdm',
|
||||
'vector-quantize-pytorch',
|
||||
'x-clip>=0.4.4',
|
||||
'youtokentome',
|
||||
'webdataset>=0.2.5',
|
||||
'fsspec>=2022.1.0',
|
||||
'torchmetrics[image]>=0.8.0'
|
||||
|
||||
406
train_decoder.py
406
train_decoder.py
@@ -1,9 +1,11 @@
|
||||
from dalle2_pytorch import Unet, Decoder
|
||||
from pathlib import Path
|
||||
|
||||
from dalle2_pytorch.trainer import DecoderTrainer
|
||||
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
|
||||
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
|
||||
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker, DummyTracker
|
||||
from dalle2_pytorch.train_configs import TrainDecoderConfig
|
||||
from dalle2_pytorch.utils import Timer, print_ribbon
|
||||
from dalle2_pytorch.dalle2_pytorch import resize_image_to
|
||||
|
||||
import torchvision
|
||||
import torch
|
||||
@@ -11,6 +13,8 @@ from torchmetrics.image.fid import FrechetInceptionDistance
|
||||
from torchmetrics.image.inception import InceptionScore
|
||||
from torchmetrics.image.kid import KernelInceptionDistance
|
||||
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
|
||||
from accelerate import Accelerator, DistributedDataParallelKwargs
|
||||
from accelerate.utils import dataclasses as accelerate_dataclasses
|
||||
import webdataset as wds
|
||||
import click
|
||||
|
||||
@@ -41,6 +45,7 @@ def create_dataloaders(
|
||||
train_prop = 0.75,
|
||||
val_prop = 0.15,
|
||||
test_prop = 0.10,
|
||||
seed = 0,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
@@ -51,7 +56,7 @@ def create_dataloaders(
|
||||
num_test = round(test_prop*len(available_shards))
|
||||
num_val = len(available_shards) - num_train - num_test
|
||||
assert num_train + num_test + num_val == len(available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(available_shards)}"
|
||||
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(0))
|
||||
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(seed))
|
||||
|
||||
# The shard number in the webdataset file names has a fixed width. We zero pad the shard numbers so they correspond to a filename.
|
||||
train_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in train_split]
|
||||
@@ -116,7 +121,6 @@ def get_example_data(dataloader, device, n=5):
|
||||
captions.extend(list(txt))
|
||||
if len(images) >= n:
|
||||
break
|
||||
print("Generated {} examples".format(len(images)))
|
||||
return list(zip(images[:n], embeddings[:n], captions[:n]))
|
||||
|
||||
def generate_samples(trainer, example_data, text_prepend=""):
|
||||
@@ -136,6 +140,14 @@ def generate_grid_samples(trainer, examples, text_prepend=""):
|
||||
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
||||
"""
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, text_prepend)
|
||||
|
||||
real_image_size = real_images[0].shape[-1]
|
||||
generated_image_size = generated_images[0].shape[-1]
|
||||
|
||||
# training images may be larger than the generated one
|
||||
if real_image_size > generated_image_size:
|
||||
real_images = [resize_image_to(image, generated_image_size) for image in real_images]
|
||||
|
||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||
return grid_images, captions
|
||||
|
||||
@@ -146,27 +158,34 @@ def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID
|
||||
metrics = {}
|
||||
# Prepare the data
|
||||
examples = get_example_data(dataloader, device, n_evaluation_samples)
|
||||
if len(examples) == 0:
|
||||
print("No data to evaluate. Check that your dataloader has shards.")
|
||||
return metrics
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples)
|
||||
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
|
||||
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
|
||||
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
|
||||
int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
|
||||
int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
|
||||
|
||||
def null_sync(t, *args, **kwargs):
|
||||
return [t]
|
||||
|
||||
if exists(FID):
|
||||
fid = FrechetInceptionDistance(**FID)
|
||||
fid = FrechetInceptionDistance(**FID, dist_sync_fn=null_sync)
|
||||
fid.to(device=device)
|
||||
fid.update(int_real_images, real=True)
|
||||
fid.update(int_generated_images, real=False)
|
||||
metrics["FID"] = fid.compute().item()
|
||||
if exists(IS):
|
||||
inception = InceptionScore(**IS)
|
||||
inception = InceptionScore(**IS, dist_sync_fn=null_sync)
|
||||
inception.to(device=device)
|
||||
inception.update(int_real_images)
|
||||
is_mean, is_std = inception.compute()
|
||||
metrics["IS_mean"] = is_mean.item()
|
||||
metrics["IS_std"] = is_std.item()
|
||||
if exists(KID):
|
||||
kernel_inception = KernelInceptionDistance(**KID)
|
||||
kernel_inception = KernelInceptionDistance(**KID, dist_sync_fn=null_sync)
|
||||
kernel_inception.to(device=device)
|
||||
kernel_inception.update(int_real_images, real=True)
|
||||
kernel_inception.update(int_generated_images, real=False)
|
||||
@@ -177,39 +196,47 @@ def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID
|
||||
# Convert from [0, 1] to [-1, 1]
|
||||
renorm_real_images = real_images.mul(2).sub(1)
|
||||
renorm_generated_images = generated_images.mul(2).sub(1)
|
||||
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS)
|
||||
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS, dist_sync_fn=null_sync)
|
||||
lpips.to(device=device)
|
||||
lpips.update(renorm_real_images, renorm_generated_images)
|
||||
metrics["LPIPS"] = lpips.compute().item()
|
||||
|
||||
if trainer.accelerator.num_processes > 1:
|
||||
# Then we should sync the metrics
|
||||
metrics_order = sorted(metrics.keys())
|
||||
metrics_tensor = torch.zeros(1, len(metrics), device=device, dtype=torch.float)
|
||||
for i, metric_name in enumerate(metrics_order):
|
||||
metrics_tensor[0, i] = metrics[metric_name]
|
||||
metrics_tensor = trainer.accelerator.gather(metrics_tensor)
|
||||
metrics_tensor = metrics_tensor.mean(dim=0)
|
||||
for i, metric_name in enumerate(metrics_order):
|
||||
metrics[metric_name] = metrics_tensor[i].item()
|
||||
return metrics
|
||||
|
||||
def save_trainer(tracker, trainer, epoch, step, validation_losses, relative_paths):
|
||||
def save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, relative_paths):
|
||||
"""
|
||||
Logs the model with an appropriate method depending on the tracker
|
||||
"""
|
||||
if isinstance(relative_paths, str):
|
||||
relative_paths = [relative_paths]
|
||||
trainer_state_dict = {}
|
||||
trainer_state_dict["trainer"] = trainer.state_dict()
|
||||
trainer_state_dict['epoch'] = epoch
|
||||
trainer_state_dict['step'] = step
|
||||
trainer_state_dict['validation_losses'] = validation_losses
|
||||
for relative_path in relative_paths:
|
||||
tracker.save_state_dict(trainer_state_dict, relative_path)
|
||||
local_path = str(tracker.data_path / relative_path)
|
||||
trainer.save(local_path, epoch=epoch, sample=sample, next_task=next_task, validation_losses=validation_losses)
|
||||
tracker.save_file(local_path)
|
||||
|
||||
def recall_trainer(tracker, trainer, recall_source=None, **load_config):
|
||||
"""
|
||||
Loads the model with an appropriate method depending on the tracker
|
||||
"""
|
||||
print(print_ribbon(f"Loading model from {recall_source}"))
|
||||
state_dict = tracker.recall_state_dict(recall_source, **load_config)
|
||||
trainer.load_state_dict(state_dict["trainer"])
|
||||
print("Model loaded")
|
||||
return state_dict["epoch"], state_dict["step"], state_dict["validation_losses"]
|
||||
trainer.accelerator.print(print_ribbon(f"Loading model from {recall_source}"))
|
||||
local_filepath = tracker.recall_file(recall_source, **load_config)
|
||||
state_dict = trainer.load(local_filepath)
|
||||
return state_dict.get("epoch", 0), state_dict.get("validation_losses", []), state_dict.get("next_task", "train"), state_dict.get("sample", 0)
|
||||
|
||||
def train(
|
||||
dataloaders,
|
||||
decoder,
|
||||
accelerator,
|
||||
tracker,
|
||||
inference_device,
|
||||
load_config=None,
|
||||
@@ -228,17 +255,30 @@ def train(
|
||||
"""
|
||||
Trains a decoder on a dataset.
|
||||
"""
|
||||
trainer = DecoderTrainer( # TODO: Change the get_optimizer function so that it can take arbitrary named args so we can just put **kwargs as an argument here
|
||||
decoder,
|
||||
is_master = accelerator.process_index == 0
|
||||
|
||||
trainer = DecoderTrainer(
|
||||
decoder=decoder,
|
||||
accelerator=accelerator,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
# Set up starting model and parameters based on a recalled state dict
|
||||
start_step = 0
|
||||
start_epoch = 0
|
||||
validation_losses = []
|
||||
next_task = 'train'
|
||||
sample = 0
|
||||
val_sample = 0
|
||||
step = lambda: int(trainer.step.item())
|
||||
|
||||
if exists(load_config) and exists(load_config.source):
|
||||
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
|
||||
start_epoch, validation_losses, next_task, recalled_sample = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config.dict())
|
||||
if next_task == 'train':
|
||||
sample = recalled_sample
|
||||
if next_task == 'val':
|
||||
val_sample = recalled_sample
|
||||
accelerator.print(f"Loaded model from {load_config.source} on epoch {start_epoch} with minimum validation loss {min(validation_losses) if len(validation_losses) > 0 else 'N/A'}")
|
||||
accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}")
|
||||
trainer.to(device=inference_device)
|
||||
|
||||
if not exists(unet_training_mask):
|
||||
@@ -246,139 +286,185 @@ def train(
|
||||
unet_training_mask = [True] * trainer.num_unets
|
||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
|
||||
print(print_ribbon("Generating Example Data", repeat=40))
|
||||
print("This can take a while to load the shard lists...")
|
||||
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
|
||||
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
|
||||
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
||||
accelerator.print("This can take a while to load the shard lists...")
|
||||
if is_master:
|
||||
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
|
||||
accelerator.print("Generated training examples")
|
||||
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
|
||||
accelerator.print("Generated testing examples")
|
||||
|
||||
send_to_device = lambda arr: [x.to(device=inference_device, dtype=torch.float) for x in arr]
|
||||
step = start_step
|
||||
|
||||
sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device)
|
||||
unet_losses_tensor = torch.zeros(TRAIN_CALC_LOSS_EVERY_ITERS, trainer.num_unets, dtype=torch.float, device=inference_device)
|
||||
for epoch in range(start_epoch, epochs):
|
||||
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
|
||||
accelerator.print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
|
||||
|
||||
timer = Timer()
|
||||
last_sample = sample
|
||||
last_snapshot = sample
|
||||
|
||||
sample = 0
|
||||
last_sample = 0
|
||||
last_snapshot = 0
|
||||
if next_task == 'train':
|
||||
for i, (img, emb) in enumerate(dataloaders["train"]):
|
||||
# We want to count the total number of samples across all processes
|
||||
sample_length_tensor[0] = len(img)
|
||||
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
||||
total_samples = all_samples.sum().item()
|
||||
sample += total_samples
|
||||
img, emb = send_to_device((img, emb))
|
||||
|
||||
losses = []
|
||||
trainer.train()
|
||||
for unet in range(1, trainer.num_unets+1):
|
||||
# Check if this is a unet we are training
|
||||
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
|
||||
continue
|
||||
|
||||
for i, (img, emb) in enumerate(dataloaders["train"]):
|
||||
step += 1
|
||||
sample += img.shape[0]
|
||||
img, emb = send_to_device((img, emb))
|
||||
|
||||
trainer.train()
|
||||
for unet in range(1, trainer.num_unets+1):
|
||||
# Check if this is a unet we are training
|
||||
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
|
||||
continue
|
||||
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
|
||||
trainer.update(unet_number=unet)
|
||||
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
|
||||
|
||||
samples_per_sec = (sample - last_sample) / timer.elapsed()
|
||||
timer.reset()
|
||||
last_sample = sample
|
||||
|
||||
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
|
||||
trainer.update(unet_number=unet)
|
||||
losses.append(loss)
|
||||
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
|
||||
# We want to average losses across all processes
|
||||
unet_all_losses = accelerator.gather(unet_losses_tensor)
|
||||
mask = unet_all_losses != 0
|
||||
unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0)
|
||||
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if loss != 0 }
|
||||
log_data = {
|
||||
"Epoch": epoch,
|
||||
"Sample": sample,
|
||||
"Step": i,
|
||||
"Samples per second": samples_per_sec,
|
||||
**loss_map
|
||||
}
|
||||
# print(f"I am rank {accelerator.state.process_index}. Example weight: {trainer.decoder.state_dict()['module.unets.0.init_conv.convs.0.weight'][0,0,0,0]}")
|
||||
if is_master:
|
||||
tracker.log(log_data, step=step(), verbose=True)
|
||||
|
||||
samples_per_sec = (sample - last_sample) / timer.elapsed()
|
||||
if is_master and last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
# It is difficult to gather this kind of info on the accelerator, so we have to do it on the master
|
||||
print("Saving snapshot")
|
||||
last_snapshot = sample
|
||||
# We need to know where the model should be saved
|
||||
save_paths = []
|
||||
if save_latest:
|
||||
save_paths.append("latest.pth")
|
||||
if save_all:
|
||||
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step()}.pth")
|
||||
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, save_paths)
|
||||
if exists(n_sample_images) and n_sample_images > 0:
|
||||
trainer.eval()
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
if epoch_samples is not None and sample >= epoch_samples:
|
||||
break
|
||||
next_task = 'val'
|
||||
sample = 0
|
||||
|
||||
timer.reset()
|
||||
last_sample = sample
|
||||
all_average_val_losses = None
|
||||
if next_task == 'val':
|
||||
trainer.eval()
|
||||
accelerator.print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
|
||||
last_val_sample = val_sample
|
||||
val_sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device)
|
||||
average_val_loss_tensor = torch.zeros(1, trainer.num_unets, dtype=torch.float, device=inference_device)
|
||||
timer = Timer()
|
||||
accelerator.wait_for_everyone()
|
||||
i = 0
|
||||
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
|
||||
val_sample_length_tensor[0] = len(img)
|
||||
all_samples = accelerator.gather(val_sample_length_tensor)
|
||||
total_samples = all_samples.sum().item()
|
||||
val_sample += total_samples
|
||||
img, emb = send_to_device((img, emb))
|
||||
|
||||
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
|
||||
average_loss = sum(losses) / len(losses)
|
||||
log_data = {
|
||||
"Training loss": average_loss,
|
||||
"Epoch": epoch,
|
||||
"Sample": sample,
|
||||
"Step": i,
|
||||
"Samples per second": samples_per_sec
|
||||
}
|
||||
tracker.log(log_data, step=step, verbose=True)
|
||||
losses = []
|
||||
for unet in range(1, len(decoder.unets)+1):
|
||||
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
|
||||
# No need to evaluate an unchanging unet
|
||||
continue
|
||||
|
||||
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
|
||||
average_val_loss_tensor[0, unet-1] += loss
|
||||
|
||||
if last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
last_snapshot = sample
|
||||
# We need to know where the model should be saved
|
||||
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
|
||||
samples_per_sec = (val_sample - last_val_sample) / timer.elapsed()
|
||||
timer.reset()
|
||||
last_val_sample = val_sample
|
||||
accelerator.print(f"Epoch {epoch}/{epochs} Val Step {i} - Sample {val_sample} - {samples_per_sec:.2f} samples/sec")
|
||||
accelerator.print(f"Loss: {(average_val_loss_tensor / (i+1))}")
|
||||
accelerator.print("")
|
||||
|
||||
if validation_samples is not None and val_sample >= validation_samples:
|
||||
break
|
||||
print(f"Rank {accelerator.state.process_index} finished validation after {i} steps")
|
||||
accelerator.wait_for_everyone()
|
||||
average_val_loss_tensor /= i+1
|
||||
# Gather all the average loss tensors
|
||||
all_average_val_losses = accelerator.gather(average_val_loss_tensor)
|
||||
if is_master:
|
||||
unet_average_val_loss = all_average_val_losses.mean(dim=0)
|
||||
val_loss_map = { f"Unet {index} Validation Loss": loss.item() for index, loss in enumerate(unet_average_val_loss) if loss != 0 }
|
||||
tracker.log(val_loss_map, step=step(), verbose=True)
|
||||
next_task = 'eval'
|
||||
|
||||
if next_task == 'eval':
|
||||
if exists(evaluate_config):
|
||||
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict())
|
||||
if is_master:
|
||||
tracker.log(evaluation, step=step(), verbose=True)
|
||||
next_task = 'sample'
|
||||
val_sample = 0
|
||||
|
||||
if next_task == 'sample':
|
||||
if is_master:
|
||||
# Generate examples and save the model if we are the master
|
||||
# Generate sample images
|
||||
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
|
||||
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
|
||||
# Get the same paths
|
||||
save_paths = []
|
||||
if save_latest:
|
||||
save_paths.append("latest.pth")
|
||||
if save_all:
|
||||
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
|
||||
if all_average_val_losses is not None:
|
||||
average_loss = all_average_val_losses.mean(dim=0).item()
|
||||
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
|
||||
save_paths.append("best.pth")
|
||||
validation_losses.append(average_loss)
|
||||
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, save_paths)
|
||||
next_task = 'train'
|
||||
|
||||
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
|
||||
|
||||
if exists(n_sample_images) and n_sample_images > 0:
|
||||
trainer.eval()
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
|
||||
|
||||
if exists(epoch_samples) and sample >= epoch_samples:
|
||||
break
|
||||
|
||||
trainer.eval()
|
||||
print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
|
||||
with torch.no_grad():
|
||||
sample = 0
|
||||
average_loss = 0
|
||||
timer = Timer()
|
||||
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
|
||||
sample += img.shape[0]
|
||||
img, emb = send_to_device((img, emb))
|
||||
|
||||
for unet in range(1, len(decoder.unets)+1):
|
||||
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
|
||||
average_loss += loss
|
||||
|
||||
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
|
||||
print(f"Epoch {epoch}/{epochs} - {sample / timer.elapsed():.2f} samples/sec")
|
||||
print(f"Loss: {average_loss / (i+1)}")
|
||||
print("")
|
||||
|
||||
if exists(validation_samples) and sample >= validation_samples:
|
||||
break
|
||||
|
||||
average_loss /= i+1
|
||||
log_data = {
|
||||
"Validation loss": average_loss
|
||||
}
|
||||
tracker.log(log_data, step=step, verbose=True)
|
||||
|
||||
# Compute evaluation metrics
|
||||
if exists(evaluate_config):
|
||||
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict())
|
||||
tracker.log(evaluation, step=step, verbose=True)
|
||||
|
||||
# Generate sample images
|
||||
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
|
||||
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step)
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
|
||||
|
||||
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
|
||||
# Get the same paths
|
||||
save_paths = []
|
||||
if save_latest:
|
||||
save_paths.append("latest.pth")
|
||||
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
|
||||
save_paths.append("best.pth")
|
||||
validation_losses.append(average_loss)
|
||||
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
|
||||
|
||||
def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
|
||||
def create_tracker(accelerator, config, config_path, tracker_type=None, data_path=None):
|
||||
"""
|
||||
Creates a tracker of the specified type and initializes special features based on the full config
|
||||
"""
|
||||
tracker_config = config.tracker
|
||||
init_config = {}
|
||||
accelerator_config = {
|
||||
"Distributed": accelerator.distributed_type != accelerate_dataclasses.DistributedType.NO,
|
||||
"DistributedType": accelerator.distributed_type,
|
||||
"NumProcesses": accelerator.num_processes,
|
||||
"MixedPrecision": accelerator.mixed_precision
|
||||
}
|
||||
init_config = { "config": {**config.dict(), **accelerator_config} }
|
||||
data_path = data_path or tracker_config.data_path
|
||||
tracker_type = tracker_type or tracker_config.tracker_type
|
||||
|
||||
if exists(tracker_config.init_config):
|
||||
init_config["config"] = tracker_config.init_config
|
||||
|
||||
if tracker_type == "console":
|
||||
tracker = ConsoleTracker(**init_config)
|
||||
if tracker_type == "dummy":
|
||||
tracker = DummyTracker(data_path)
|
||||
tracker.init(**init_config)
|
||||
elif tracker_type == "console":
|
||||
tracker = ConsoleTracker(data_path)
|
||||
tracker.init(**init_config)
|
||||
elif tracker_type == "wandb":
|
||||
# We need to initialize the resume state here
|
||||
load_config = config.load
|
||||
@@ -392,51 +478,63 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
|
||||
init_config["project"] = tracker_config.wandb_project
|
||||
tracker = WandbTracker(data_path)
|
||||
tracker.init(**init_config)
|
||||
tracker.save_file(str(config_path.absolute()), str(config_path.parent.absolute()))
|
||||
else:
|
||||
raise ValueError(f"Tracker type {tracker_type} not supported by decoder trainer")
|
||||
return tracker
|
||||
|
||||
def initialize_training(config):
|
||||
# Create the save path
|
||||
if "cuda" in config.train.device:
|
||||
assert torch.cuda.is_available(), "CUDA is not available"
|
||||
device = torch.device(config.train.device)
|
||||
torch.cuda.set_device(device)
|
||||
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
||||
def initialize_training(config, config_path):
|
||||
# Make sure if we are not loading, distributed models are initialized to the same values
|
||||
torch.manual_seed(config.seed)
|
||||
|
||||
# Set up accelerator for configurable distributed training
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
# Set up data
|
||||
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
||||
world_size = accelerator.num_processes
|
||||
rank = accelerator.process_index
|
||||
shards_per_process = len(all_shards) // world_size
|
||||
assert shards_per_process > 0, "Not enough shards to split evenly"
|
||||
my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process]
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=all_shards,
|
||||
available_shards=my_shards,
|
||||
img_preproc = config.data.img_preproc,
|
||||
train_prop = config.data.splits.train,
|
||||
val_prop = config.data.splits.val,
|
||||
test_prop = config.data.splits.test,
|
||||
n_sample_images=config.train.n_sample_images,
|
||||
**config.data.dict()
|
||||
**config.data.dict(),
|
||||
rank = rank,
|
||||
seed = config.seed,
|
||||
)
|
||||
|
||||
decoder = config.decoder.create().to(device = device)
|
||||
# Create the decoder model and print basic info
|
||||
decoder = config.decoder.create()
|
||||
num_parameters = sum(p.numel() for p in decoder.parameters())
|
||||
print(print_ribbon("Loaded Config", repeat=40))
|
||||
print(f"Number of parameters: {num_parameters}")
|
||||
|
||||
tracker = create_tracker(config, **config.tracker.dict())
|
||||
# Create and initialize the tracker if we are the master
|
||||
tracker = create_tracker(accelerator, config, config_path) if rank == 0 else create_tracker(accelerator, config, config_path, tracker_type="dummy")
|
||||
|
||||
train(dataloaders, decoder,
|
||||
accelerator.print(print_ribbon("Loaded Config", repeat=40))
|
||||
accelerator.print(f"Running training with {accelerator.num_processes} processes and {accelerator.distributed_type} distributed training")
|
||||
accelerator.print(f"Number of parameters: {num_parameters}")
|
||||
train(dataloaders, decoder, accelerator,
|
||||
tracker=tracker,
|
||||
inference_device=device,
|
||||
inference_device=accelerator.device,
|
||||
load_config=config.load,
|
||||
evaluate_config=config.evaluate,
|
||||
**config.train.dict(),
|
||||
)
|
||||
|
||||
|
||||
# Create a simple click command line interface to load the config and start the training
|
||||
@click.command()
|
||||
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
|
||||
def main(config_file):
|
||||
print("Recalling config from {}".format(config_file))
|
||||
config = TrainDecoderConfig.from_json_path(config_file)
|
||||
initialize_training(config)
|
||||
|
||||
config_file_path = Path(config_file)
|
||||
config = TrainDecoderConfig.from_json_path(str(config_file_path))
|
||||
initialize_training(config, config_path=config_file_path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,77 +1,135 @@
|
||||
from pathlib import Path
|
||||
# TODO: add start, num_data_points, eval_every and group to config
|
||||
# TODO: switch back to repo's wandb
|
||||
|
||||
START = 0
|
||||
NUM_DATA_POINTS = 250e6
|
||||
EVAL_EVERY = 1000
|
||||
GROUP = "distributed"
|
||||
|
||||
import os
|
||||
import click
|
||||
import math
|
||||
import numpy as np
|
||||
import wandb
|
||||
|
||||
import torch
|
||||
import clip
|
||||
from torch import nn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from dalle2_pytorch.dataloaders import make_splits, get_reader
|
||||
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
|
||||
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
|
||||
import numpy as np
|
||||
|
||||
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
|
||||
from dalle2_pytorch.utils import Timer, print_ribbon
|
||||
from accelerate import Accelerator
|
||||
|
||||
from tqdm import tqdm
|
||||
from dalle2_pytorch.dataloaders import get_reader, make_splits
|
||||
from dalle2_pytorch.utils import Timer
|
||||
from dalle2_pytorch.train_configs import (
|
||||
DiffusionPriorTrainConfig,
|
||||
TrainDiffusionPriorConfig,
|
||||
)
|
||||
from dalle2_pytorch.trackers import BaseTracker, WandbTracker
|
||||
from dalle2_pytorch import DiffusionPriorTrainer
|
||||
|
||||
# constants
|
||||
|
||||
REPORT_METRICS_EVERY = 250 # for cosine similarity and other metric reporting during training
|
||||
# helpers
|
||||
|
||||
tracker = WandbTracker()
|
||||
|
||||
# helpers functions
|
||||
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
||||
|
||||
|
||||
def exists(val):
|
||||
val is not None
|
||||
return val is not None
|
||||
|
||||
# functions
|
||||
|
||||
def eval_model(model, dataloader, text_conditioned, loss_type, device, phase="Validation",):
|
||||
model.eval()
|
||||
def make_model(
|
||||
prior_config, train_config, device: str = None, accelerator: Accelerator = None
|
||||
):
|
||||
# create model from config
|
||||
diffusion_prior = prior_config.create()
|
||||
|
||||
# instantiate the trainer
|
||||
trainer = DiffusionPriorTrainer(
|
||||
diffusion_prior=diffusion_prior,
|
||||
lr=train_config.lr,
|
||||
wd=train_config.wd,
|
||||
max_grad_norm=train_config.max_grad_norm,
|
||||
amp=train_config.amp,
|
||||
use_ema=train_config.use_ema,
|
||||
device=device,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
|
||||
return trainer
|
||||
|
||||
|
||||
# eval functions
|
||||
|
||||
|
||||
def eval_model(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
dataloader: DataLoader,
|
||||
text_conditioned: bool,
|
||||
loss_type: str,
|
||||
tracker_context: str,
|
||||
tracker: BaseTracker = None,
|
||||
use_ema: bool = True,
|
||||
):
|
||||
trainer.eval()
|
||||
if trainer.is_main_process():
|
||||
click.secho(f"Measuring performance on {tracker_context}", fg="green", blink=True)
|
||||
|
||||
with torch.no_grad():
|
||||
total_loss = 0.
|
||||
total_samples = 0.
|
||||
total_loss = 0.0
|
||||
total_samples = 0.0
|
||||
|
||||
for image_embeddings, text_data in tqdm(dataloader):
|
||||
image_embeddings = image_embeddings.to(device)
|
||||
text_data = text_data.to(device)
|
||||
for image_embeddings, text_data in dataloader:
|
||||
image_embeddings = image_embeddings.to(trainer.device)
|
||||
text_data = text_data.to(trainer.device)
|
||||
|
||||
batches = image_embeddings.shape[0]
|
||||
|
||||
input_args = dict(image_embed=image_embeddings)
|
||||
|
||||
if text_conditioned:
|
||||
input_args = dict(**input_args, text = text_data)
|
||||
input_args = dict(**input_args, text=text_data)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text_data)
|
||||
|
||||
loss = model(**input_args)
|
||||
if use_ema:
|
||||
loss = trainer.ema_diffusion_prior(**input_args)
|
||||
else:
|
||||
loss = trainer(**input_args)
|
||||
|
||||
total_loss += loss * batches
|
||||
total_samples += batches
|
||||
|
||||
avg_loss = (total_loss / total_samples)
|
||||
avg_loss = total_loss / total_samples
|
||||
|
||||
tracker.log({f'{phase} {loss_type}': avg_loss})
|
||||
stats = {f"{tracker_context}-{loss_type}": avg_loss}
|
||||
trainer.print(stats)
|
||||
|
||||
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
|
||||
diffusion_prior.eval()
|
||||
if exists(tracker):
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
|
||||
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
||||
|
||||
for test_image_embeddings, text_data in tqdm(dataloader):
|
||||
test_image_embeddings = test_image_embeddings.to(device)
|
||||
text_data = text_data.to(device)
|
||||
def report_cosine_sims(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
dataloader: DataLoader,
|
||||
text_conditioned: bool,
|
||||
tracker: BaseTracker,
|
||||
tracker_context: str = "validation",
|
||||
):
|
||||
trainer.eval()
|
||||
if trainer.is_main_process():
|
||||
click.secho("Measuring Cosine-Similarity", fg="green", blink=True)
|
||||
|
||||
for test_image_embeddings, text_data in dataloader:
|
||||
test_image_embeddings = test_image_embeddings.to(trainer.device)
|
||||
text_data = text_data.to(trainer.device)
|
||||
|
||||
# we are text conditioned, we produce an embedding from the tokenized text
|
||||
if text_conditioned:
|
||||
text_embedding, text_encodings, text_mask = diffusion_prior.clip.embed_text(
|
||||
text_data)
|
||||
text_cond = dict(text_embed=text_embedding,
|
||||
text_encodings=text_encodings, mask=text_mask)
|
||||
text_embedding, text_encodings, text_mask = trainer.embed_text(text_data)
|
||||
text_cond = dict(
|
||||
text_embed=text_embedding, text_encodings=text_encodings, mask=text_mask
|
||||
)
|
||||
else:
|
||||
text_embedding = text_data
|
||||
text_cond = dict(text_embed=text_embedding)
|
||||
@@ -82,8 +140,9 @@ def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
|
||||
# roll the text to simulate "unrelated" captions
|
||||
rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1)
|
||||
text_embed_shuffled = text_embed_shuffled[rolled_idx]
|
||||
text_embed_shuffled = text_embed_shuffled / \
|
||||
text_embed_shuffled.norm(dim=1, keepdim=True)
|
||||
text_embed_shuffled = text_embed_shuffled / text_embed_shuffled.norm(
|
||||
dim=1, keepdim=True
|
||||
)
|
||||
|
||||
if text_conditioned:
|
||||
text_encodings_shuffled = text_encodings[rolled_idx]
|
||||
@@ -92,294 +151,276 @@ def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
|
||||
text_encodings_shuffled = None
|
||||
text_mask_shuffled = None
|
||||
|
||||
text_cond_shuffled = dict(text_embed=text_embed_shuffled,
|
||||
text_encodings=text_encodings_shuffled, mask=text_mask_shuffled)
|
||||
text_cond_shuffled = dict(
|
||||
text_embed=text_embed_shuffled,
|
||||
text_encodings=text_encodings_shuffled,
|
||||
mask=text_mask_shuffled,
|
||||
)
|
||||
|
||||
# prepare the text embedding
|
||||
text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True)
|
||||
|
||||
# prepare image embeddings
|
||||
test_image_embeddings = test_image_embeddings / \
|
||||
test_image_embeddings.norm(dim=1, keepdim=True)
|
||||
test_image_embeddings = test_image_embeddings / test_image_embeddings.norm(
|
||||
dim=1, keepdim=True
|
||||
)
|
||||
|
||||
# predict on the unshuffled text embeddings
|
||||
predicted_image_embeddings = diffusion_prior.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond)
|
||||
predicted_image_embeddings = predicted_image_embeddings / \
|
||||
predicted_image_embeddings.norm(dim=1, keepdim=True)
|
||||
predicted_image_embeddings = trainer.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond
|
||||
)
|
||||
|
||||
predicted_image_embeddings = (
|
||||
predicted_image_embeddings
|
||||
/ predicted_image_embeddings.norm(dim=1, keepdim=True)
|
||||
)
|
||||
|
||||
# predict on the shuffled embeddings
|
||||
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond_shuffled)
|
||||
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
|
||||
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
|
||||
predicted_unrelated_embeddings = trainer.p_sample_loop(
|
||||
test_image_embeddings.shape, text_cond_shuffled
|
||||
)
|
||||
|
||||
predicted_unrelated_embeddings = (
|
||||
predicted_unrelated_embeddings
|
||||
/ predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
|
||||
)
|
||||
|
||||
# calculate similarities
|
||||
original_similarity = cos(
|
||||
text_embed, test_image_embeddings).cpu().numpy()
|
||||
predicted_similarity = cos(
|
||||
text_embed, predicted_image_embeddings).cpu().numpy()
|
||||
unrelated_similarity = cos(
|
||||
text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
predicted_img_similarity = cos(
|
||||
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
|
||||
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
|
||||
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
|
||||
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
|
||||
original_similarity = cos(text_embed, test_image_embeddings).cpu().numpy()
|
||||
predicted_similarity = cos(text_embed, predicted_image_embeddings).cpu().numpy()
|
||||
unrelated_similarity = (
|
||||
cos(text_embed, predicted_unrelated_embeddings).cpu().numpy()
|
||||
)
|
||||
predicted_img_similarity = (
|
||||
cos(test_image_embeddings, predicted_image_embeddings).cpu().numpy()
|
||||
)
|
||||
|
||||
stats = {
|
||||
f"{tracker_context}/baseline similarity": np.mean(original_similarity),
|
||||
f"{tracker_context}/similarity with text": np.mean(predicted_similarity),
|
||||
f"{tracker_context}/similarity with original image": np.mean(
|
||||
predicted_img_similarity
|
||||
),
|
||||
f"{tracker_context}/similarity with unrelated caption": np.mean(unrelated_similarity),
|
||||
f"{tracker_context}/difference from baseline similarity": np.mean(
|
||||
predicted_similarity - original_similarity
|
||||
),
|
||||
}
|
||||
|
||||
for k, v in stats.items():
|
||||
trainer.print(f"{tracker_context}/{k}: {v}")
|
||||
|
||||
if exists(tracker):
|
||||
tracker.log(stats, step=trainer.step.item() + 1)
|
||||
|
||||
|
||||
# training script
|
||||
|
||||
|
||||
def train(
|
||||
trainer: DiffusionPriorTrainer,
|
||||
train_loader: DataLoader,
|
||||
eval_loader: DataLoader,
|
||||
test_loader: DataLoader,
|
||||
config: DiffusionPriorTrainConfig,
|
||||
):
|
||||
# distributed tracking with wandb
|
||||
if trainer.accelerator.num_processes > 1:
|
||||
os.environ["WANDB_START_METHOD"] = "thread"
|
||||
|
||||
tracker = wandb.init(
|
||||
name=f"RANK:{trainer.device}",
|
||||
entity=config.tracker.wandb_entity,
|
||||
project=config.tracker.wandb_project,
|
||||
config=config.dict(),
|
||||
group=GROUP,
|
||||
)
|
||||
|
||||
# sync after tracker init
|
||||
trainer.wait_for_everyone()
|
||||
|
||||
# init a timer
|
||||
timer = Timer()
|
||||
|
||||
# do training
|
||||
for img, txt in train_loader:
|
||||
trainer.train()
|
||||
current_step = trainer.step.item() + 1
|
||||
|
||||
# place data on device
|
||||
img = img.to(trainer.device)
|
||||
txt = txt.to(trainer.device)
|
||||
|
||||
# pass to model
|
||||
loss = trainer(text=txt, image_embed=img)
|
||||
|
||||
# display & log loss (will only print from main process)
|
||||
trainer.print(f"Step {current_step}: Loss {loss}")
|
||||
|
||||
# perform backprop & apply EMA updates
|
||||
trainer.update()
|
||||
|
||||
# track samples/sec/rank
|
||||
samples_per_sec = img.shape[0] / timer.elapsed()
|
||||
|
||||
# samples seen
|
||||
samples_seen = (
|
||||
config.data.batch_size * trainer.accelerator.num_processes * current_step
|
||||
)
|
||||
|
||||
# ema decay
|
||||
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
|
||||
|
||||
# Log on all processes for debugging
|
||||
tracker.log(
|
||||
{
|
||||
"tracking/samples-sec": samples_per_sec,
|
||||
"tracking/samples-seen": samples_seen,
|
||||
"tracking/ema-decay": ema_decay,
|
||||
"metrics/training-loss": loss,
|
||||
},
|
||||
step=current_step,
|
||||
)
|
||||
|
||||
# Metric Tracking & Checkpointing (outside of timer's scope)
|
||||
if current_step % EVAL_EVERY == 0:
|
||||
eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="metrics/online-model-validation",
|
||||
tracker=tracker,
|
||||
use_ema=False,
|
||||
)
|
||||
|
||||
eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="metrics/ema-model-validation",
|
||||
tracker=tracker,
|
||||
use_ema=True,
|
||||
)
|
||||
|
||||
report_cosine_sims(
|
||||
trainer=trainer,
|
||||
dataloader=eval_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
tracker=tracker,
|
||||
tracker_context="metrics",
|
||||
)
|
||||
|
||||
if current_step % config.train.save_every == 0:
|
||||
trainer.save(f"{config.tracker.data_path}/chkpt_step_{current_step}.pth")
|
||||
|
||||
# reset timer for next round
|
||||
timer.reset()
|
||||
|
||||
# evaluate on test data
|
||||
|
||||
eval_model(
|
||||
trainer=trainer,
|
||||
dataloader=test_loader,
|
||||
text_conditioned=config.prior.condition_on_text_encodings,
|
||||
loss_type=config.prior.loss_type,
|
||||
tracker_context="test",
|
||||
tracker=tracker,
|
||||
)
|
||||
|
||||
report_cosine_sims(
|
||||
trainer,
|
||||
test_loader,
|
||||
config.prior.condition_on_text_encodings,
|
||||
tracker,
|
||||
tracker_context="test",
|
||||
)
|
||||
|
||||
|
||||
def initialize_training(config, accelerator=None):
|
||||
"""
|
||||
Parse the configuration file, and prepare everything necessary for training
|
||||
"""
|
||||
|
||||
# get a device
|
||||
|
||||
if accelerator:
|
||||
device = accelerator.device
|
||||
click.secho(f"Accelerating on: {device}", fg="yellow")
|
||||
else:
|
||||
if torch.cuda.is_available():
|
||||
click.secho("GPU detected, defaulting to cuda:0", fg="yellow")
|
||||
device = "cuda:0"
|
||||
else:
|
||||
click.secho("No GPU detected...using cpu", fg="yellow")
|
||||
device = "cpu"
|
||||
|
||||
# make the trainer (will automatically distribute if possible & configured)
|
||||
|
||||
trainer = make_model(config.prior, config.train, device, accelerator).to(device)
|
||||
|
||||
# reload from chcekpoint
|
||||
|
||||
if config.load.resume == True:
|
||||
click.secho(f"Loading checkpoint: {config.load.source}", fg="cyan")
|
||||
trainer.load(config.load.source)
|
||||
|
||||
# fetch and prepare data
|
||||
|
||||
if trainer.is_main_process():
|
||||
click.secho("Grabbing data from source", fg="blue", blink=True)
|
||||
|
||||
img_reader = get_reader(
|
||||
text_conditioned=trainer.text_conditioned,
|
||||
img_url=config.data.image_url,
|
||||
meta_url=config.data.meta_url,
|
||||
)
|
||||
|
||||
train_loader, eval_loader, test_loader = make_splits(
|
||||
text_conditioned=trainer.text_conditioned,
|
||||
batch_size=config.data.batch_size,
|
||||
num_data_points=NUM_DATA_POINTS,
|
||||
train_split=config.data.splits.train,
|
||||
eval_split=config.data.splits.val,
|
||||
image_reader=img_reader,
|
||||
rank=accelerator.state.process_index if exists(accelerator) else 0,
|
||||
world_size=accelerator.state.num_processes if exists(accelerator) else 1,
|
||||
start=START,
|
||||
)
|
||||
|
||||
# wait for everyone to load data before continuing
|
||||
trainer.wait_for_everyone()
|
||||
|
||||
# start training
|
||||
train(
|
||||
trainer=trainer,
|
||||
train_loader=train_loader,
|
||||
eval_loader=eval_loader,
|
||||
test_loader=test_loader,
|
||||
config=config,
|
||||
)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("--wandb-entity", default="laion")
|
||||
@click.option("--wandb-project", default="diffusion-prior")
|
||||
@click.option("--wandb-dataset", default="LAION-5B")
|
||||
@click.option("--wandb-arch", default="DiffusionPrior")
|
||||
@click.option("--image-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/")
|
||||
@click.option("--text-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/")
|
||||
@click.option("--meta-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/")
|
||||
@click.option("--learning-rate", default=1.1e-4)
|
||||
@click.option("--weight-decay", default=6.02e-2)
|
||||
@click.option("--dropout", default=5e-2)
|
||||
@click.option("--max-grad-norm", default=0.5)
|
||||
@click.option("--num-data-points", default=250e6)
|
||||
@click.option("--batch-size", default=320)
|
||||
@click.option("--num-epochs", default=5)
|
||||
@click.option("--image-embed-dim", default=768)
|
||||
@click.option("--train-percent", default=0.9)
|
||||
@click.option("--val-percent", default=1e-7)
|
||||
@click.option("--test-percent", default=0.0999999)
|
||||
@click.option("--dpn-depth", default=12)
|
||||
@click.option("--dpn-dim-head", default=64)
|
||||
@click.option("--dpn-heads", default=12)
|
||||
@click.option("--dp-condition-on-text-encodings", default=True)
|
||||
@click.option("--dp-timesteps", default=1000)
|
||||
@click.option("--dp-normformer", default=True)
|
||||
@click.option("--dp-cond-drop-prob", default=0.1)
|
||||
@click.option("--dp-loss-type", default="l2")
|
||||
@click.option("--clip", default="ViT-L/14")
|
||||
@click.option("--amp", default=False)
|
||||
@click.option("--save-interval", default=120)
|
||||
@click.option("--save-path", default="./diffusion_prior_checkpoints")
|
||||
@click.option("--pretrained-model-path", default=None)
|
||||
@click.option("--gpu-device", default=0)
|
||||
def train(
|
||||
wandb_entity,
|
||||
wandb_project,
|
||||
wandb_dataset,
|
||||
wandb_arch,
|
||||
image_embed_url,
|
||||
text_embed_url,
|
||||
meta_url,
|
||||
learning_rate,
|
||||
weight_decay,
|
||||
dropout,
|
||||
max_grad_norm,
|
||||
num_data_points,
|
||||
batch_size,
|
||||
num_epochs,
|
||||
image_embed_dim,
|
||||
train_percent,
|
||||
val_percent,
|
||||
test_percent,
|
||||
dpn_depth,
|
||||
dpn_dim_head,
|
||||
dpn_heads,
|
||||
dp_condition_on_text_encodings,
|
||||
dp_timesteps,
|
||||
dp_normformer,
|
||||
dp_cond_drop_prob,
|
||||
dp_loss_type,
|
||||
clip,
|
||||
amp,
|
||||
save_interval,
|
||||
save_path,
|
||||
pretrained_model_path,
|
||||
gpu_device
|
||||
):
|
||||
config = {
|
||||
"learning_rate": learning_rate,
|
||||
"architecture": wandb_arch,
|
||||
"dataset": wandb_dataset,
|
||||
"weight_decay": weight_decay,
|
||||
"max_gradient_clipping_norm": max_grad_norm,
|
||||
"batch_size": batch_size,
|
||||
"epochs": num_epochs,
|
||||
"diffusion_prior_network": {
|
||||
"depth": dpn_depth,
|
||||
"dim_head": dpn_dim_head,
|
||||
"heads": dpn_heads,
|
||||
"normformer": dp_normformer
|
||||
},
|
||||
"diffusion_prior": {
|
||||
"condition_on_text_encodings": dp_condition_on_text_encodings,
|
||||
"timesteps": dp_timesteps,
|
||||
"cond_drop_prob": dp_cond_drop_prob,
|
||||
"loss_type": dp_loss_type,
|
||||
"clip": clip
|
||||
}
|
||||
}
|
||||
|
||||
# Check if DPRIOR_PATH exists(saved model path)
|
||||
|
||||
DPRIOR_PATH = pretrained_model_path
|
||||
RESUME = exists(DPRIOR_PATH)
|
||||
|
||||
if not RESUME:
|
||||
tracker.init(
|
||||
entity = wandb_entity,
|
||||
project = wandb_project,
|
||||
config = config
|
||||
)
|
||||
|
||||
# Obtain the utilized device.
|
||||
|
||||
has_cuda = torch.cuda.is_available()
|
||||
if has_cuda:
|
||||
device = torch.device(f"cuda:{gpu_device}")
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
# Training loop
|
||||
# diffusion prior network
|
||||
|
||||
prior_network = DiffusionPriorNetwork(
|
||||
dim = image_embed_dim,
|
||||
depth = dpn_depth,
|
||||
dim_head = dpn_dim_head,
|
||||
heads = dpn_heads,
|
||||
attn_dropout = dropout,
|
||||
ff_dropout = dropout,
|
||||
normformer = dp_normformer
|
||||
)
|
||||
|
||||
# Load clip model if text-conditioning
|
||||
if dp_condition_on_text_encodings:
|
||||
clip_adapter = OpenAIClipAdapter(clip)
|
||||
@click.option("--hfa", default=True)
|
||||
@click.option("--config_path", default="configs/prior.json")
|
||||
def main(hfa, config_path):
|
||||
# start HFA if requested
|
||||
if hfa:
|
||||
accelerator = Accelerator()
|
||||
else:
|
||||
clip_adapter = None
|
||||
accelerator = None
|
||||
|
||||
# diffusion prior with text embeddings and image embeddings pre-computed
|
||||
# load the configuration file on main process
|
||||
if not exists(accelerator) or accelerator.is_main_process:
|
||||
click.secho(f"Loading configuration from {config_path}", fg="green")
|
||||
|
||||
diffusion_prior = DiffusionPrior(
|
||||
net = prior_network,
|
||||
clip = clip_adapter,
|
||||
image_embed_dim = image_embed_dim,
|
||||
timesteps = dp_timesteps,
|
||||
cond_drop_prob = dp_cond_drop_prob,
|
||||
loss_type = dp_loss_type,
|
||||
condition_on_text_encodings = dp_condition_on_text_encodings
|
||||
)
|
||||
config = TrainDiffusionPriorConfig.from_json_path(config_path)
|
||||
|
||||
# Load pre-trained model from DPRIOR_PATH
|
||||
|
||||
if RESUME:
|
||||
diffusion_prior, loaded_obj = load_diffusion_model(DPRIOR_PATH, device)
|
||||
tracker.init(entity = wandb_entity, project = wandb_project, config = config)
|
||||
|
||||
# diffusion prior trainer
|
||||
|
||||
trainer = DiffusionPriorTrainer(
|
||||
diffusion_prior = diffusion_prior,
|
||||
lr = learning_rate,
|
||||
wd = weight_decay,
|
||||
max_grad_norm = max_grad_norm,
|
||||
amp = amp,
|
||||
).to(device)
|
||||
|
||||
# load optimizer and scaler
|
||||
|
||||
if RESUME:
|
||||
trainer.optimizer.load_state_dict(loaded_obj['optimizer'])
|
||||
trainer.scaler.load_state_dict(loaded_obj['scaler'])
|
||||
|
||||
# Create save_path if it doesn't exist
|
||||
|
||||
Path(save_path).mkdir(exist_ok = True, parents = True)
|
||||
|
||||
# Utilize wrapper to abstract away loader logic
|
||||
print_ribbon("Downloading Embeddings")
|
||||
reader_args = dict(text_conditioned=dp_condition_on_text_encodings, img_url=image_embed_url)
|
||||
|
||||
if dp_condition_on_text_encodings:
|
||||
reader_args = dict(**reader_args, meta_url=meta_url)
|
||||
img_reader = get_reader(**reader_args)
|
||||
train_loader, eval_loader, test_loader = make_splits(
|
||||
text_conditioned=dp_condition_on_text_encodings,
|
||||
batch_size=batch_size,
|
||||
num_data_points=num_data_points,
|
||||
train_split=train_percent,
|
||||
eval_split=val_percent,
|
||||
image_reader=img_reader
|
||||
)
|
||||
else:
|
||||
reader_args = dict(**reader_args, txt_url=text_embed_url)
|
||||
img_reader, txt_reader = get_reader(**reader_args)
|
||||
train_loader, eval_loader, test_loader = make_splits(
|
||||
text_conditioned=dp_condition_on_text_encodings,
|
||||
batch_size=batch_size,
|
||||
num_data_points=num_data_points,
|
||||
train_split=train_percent,
|
||||
eval_split=val_percent,
|
||||
image_reader=img_reader,
|
||||
text_reader=txt_reader
|
||||
)
|
||||
|
||||
### Training code ###
|
||||
|
||||
step = 1
|
||||
timer = Timer()
|
||||
epochs = num_epochs
|
||||
|
||||
for _ in range(epochs):
|
||||
|
||||
for image, text in tqdm(train_loader):
|
||||
diffusion_prior.train()
|
||||
|
||||
image = image.to(device)
|
||||
text = text.to(device)
|
||||
|
||||
input_args = dict(image_embed=image)
|
||||
if dp_condition_on_text_encodings:
|
||||
input_args = dict(**input_args, text = text)
|
||||
else:
|
||||
input_args = dict(**input_args, text_embed=text)
|
||||
|
||||
loss = trainer(**input_args)
|
||||
|
||||
# Samples per second
|
||||
|
||||
samples_per_sec = batch_size * step / timer.elapsed()
|
||||
|
||||
# Save checkpoint every save_interval minutes
|
||||
if(int(timer.elapsed()) >= 60 * save_interval):
|
||||
timer.reset()
|
||||
|
||||
save_diffusion_model(
|
||||
save_path,
|
||||
diffusion_prior,
|
||||
trainer.optimizer,
|
||||
trainer.scaler,
|
||||
config,
|
||||
image_embed_dim)
|
||||
|
||||
# Log to wandb
|
||||
tracker.log({"Training loss": loss,
|
||||
"Steps": step,
|
||||
"Samples per second": samples_per_sec})
|
||||
# Log cosineSim(text_embed,predicted_image_embed) - cosineSim(text_embed,image_embed)
|
||||
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
|
||||
# Get embeddings from the most recently saved model
|
||||
if(step % REPORT_METRICS_EVERY) == 0:
|
||||
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings, device=device)
|
||||
### Evaluate model(validation run) ###
|
||||
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation", device=device)
|
||||
|
||||
step += 1
|
||||
trainer.update()
|
||||
|
||||
### Test run ###
|
||||
eval_model(diffusion_prior, test_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Test")
|
||||
# send config to get processed
|
||||
initialize_training(config, accelerator)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train()
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user