Compare commits

...

21 Commits

Author SHA1 Message Date
Phil Wang
fc7abf624d in paper, blur sigma was 0.6 2022-06-20 09:05:08 -07:00
Phil Wang
67f0740777 small cleanup 2022-06-20 08:59:51 -07:00
Phil Wang
138079ca83 allow for setting beta schedules of unets differently in the decoder, as what was used in the paper was cosine, cosine, linear 2022-06-20 08:56:37 -07:00
zion
f5a906f5d3 prior train script bug fixes (#153) 2022-06-19 15:55:15 -07:00
Phil Wang
0215237fc6 update status 2022-06-19 09:42:24 -07:00
Phil Wang
461b91c5c1 also merge distributed training code for decoder, thanks to @Veldrovive 2022-06-19 09:26:44 -07:00
Aidan Dempster
58892135d9 Distributed Training of the Decoder (#121)
* Converted decoder trainer to use accelerate

* Fixed issue where metric evaluation would hang on distributed mode

* Implemented functional saving
Loading still fails due to some issue with the optimizer

* Fixed issue with loading decoders

* Fixed issue with tracker config

* Fixed issue with amp
Updated logging to be more logical

* Saving checkpoint now saves position in training as well
Fixed an issue with running out of gpu space due to loading weights into the gpu twice

* Fixed ema for distributed training

* Fixed isue where get_pkg_version was reintroduced

* Changed decoder trainer to upload config as a file

Fixed issue where loading best would error
2022-06-19 09:25:54 -07:00
Phil Wang
e37072a48c 0.10.0 2022-06-19 08:50:53 -07:00
Phil Wang
41ca896413 depend on huggingface accelerate, move appreciation thread up for visibility 2022-06-19 08:50:35 -07:00
zion
fe19b508ca Distributed Training of the Prior (#112)
* distributed prior trainer

better EMA support

update load and save methods of prior

* update prior training script

add test evalution & ema validation

add more tracking metrics

small cleanup
2022-06-19 08:46:14 -07:00
Phil Wang
6651eafa93 one more residual, after seeing good results on unconditional generation locally 2022-06-16 11:18:02 -07:00
Phil Wang
e6bb75e5ab fix missing residual for highest resolution of the unet 2022-06-15 20:09:43 -07:00
Giorgos Zachariadis
b4c3e5b854 changed str in order to avoid confusions and collisions with Python (#147) 2022-06-15 13:41:16 -07:00
Phil Wang
b7f9607258 make memory efficient unet design from imagen toggle-able 2022-06-15 13:40:26 -07:00
Phil Wang
2219348a6e adopt similar unet architecture as imagen 2022-06-15 12:18:21 -07:00
Phil Wang
9eea9b9862 add p2 loss reweighting for decoder training as an option 2022-06-14 10:58:57 -07:00
Phil Wang
5d958713c0 fix classifier free guidance for image hiddens summed to time hiddens, thanks to @xvjiarui for finding this bug 2022-06-13 21:01:50 -07:00
Phil Wang
0f31980362 cleanup 2022-06-07 17:31:38 -07:00
Phil Wang
bee5bf3815 fix for https://github.com/lucidrains/DALLE2-pytorch/issues/143 2022-06-07 09:03:48 -07:00
Phil Wang
350a3d6045 0.6.16 2022-06-06 08:45:46 -07:00
Kashif Rasul
1a81670718 fix quadratic_beta_schedule (#141) 2022-06-06 08:45:14 -07:00
12 changed files with 1021 additions and 655 deletions

View File

@@ -27,10 +27,27 @@ As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lu
- <a href="https://twitter.com/Buntworthy/status/1529475416775434240?t=0GEge3Kr9I36cjcUVCQUTg">Justin Pinkney</a> successfully trained the diffusion prior in the repository for his CLIP to Stylegan2 text-to-image application
## Pre-Trained Models
- LAION is training prior models. Checkpoints are available on <a href="https://huggingface.co/zenglishuci/conditioned-prior">🤗huggingface</a> and the training statistics are available on <a href="https://wandb.ai/nousr_laion/conditioned-prior/reports/LAION-DALLE2-PyTorch-Prior--VmlldzoyMDI2OTIx">🐝WANDB</a>.
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/jkrtg0so?workspace=user-veldrovive">In-progress test run</a> 🚧
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/3d5rytsa?workspace=">Another test run with sparse attention</a>
- DALL-E 2 🚧
## Appreciation
This library would not have gotten to this working state without the help of
- <a href="https://github.com/nousr">Zion</a> for the distributed training code for the diffusion prior
- <a href="https://github.com/Veldrovive">Aidan</a> for the distributed training code for the decoder as well as the dataloaders
- <a href="https://github.com/krish240574">Kumar</a> for working on the initial diffusion training script
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
... and many others. Thank you! 🙏
## Install
```bash
@@ -1041,19 +1058,6 @@ Once built, images will be saved to the same directory the command is invoked
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
## Appreciation
This library would not have gotten to this working state without the help of
- <a href="https://github.com/nousr">Zion</a> and <a href="https://github.com/krish240574">Kumar</a> for the diffusion training script
- <a href="https://github.com/Veldrovive">Aidan</a> for the decoder training script and dataloaders
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
... and many others. Thank you! 🙏
## Todo
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
@@ -1207,4 +1211,14 @@ This library would not have gotten to this working state without the help of
}
```
```bibtex
@article{Choi2022PerceptionPT,
title = {Perception Prioritized Training of Diffusion Models},
author = {Jooyoung Choi and Jungbeom Lee and Chaehun Shin and Sungwon Kim and Hyunwoo J. Kim and Sung-Hoon Yoon},
journal = {ArXiv},
year = {2022},
volume = {abs/2204.00227}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -1,7 +1,6 @@
import math
import random
from tqdm import tqdm
from inspect import isfunction
from functools import partial, wraps
from contextlib import contextmanager
from collections import namedtuple
@@ -12,7 +11,7 @@ import torch.nn.functional as F
from torch import nn, einsum
import torchvision.transforms as T
from einops import rearrange, repeat
from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many, repeat_many, check_shape
from einops_exts.torch import EinopsToAndFrom
@@ -57,7 +56,7 @@ def maybe(fn):
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
return d() if callable(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
@@ -314,11 +313,6 @@ def extract(a, t, x_shape):
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def meanflat(x):
return x.mean(dim = tuple(range(1, len(x.shape))))
@@ -373,7 +367,7 @@ def quadratic_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start**2, beta_end**2, timesteps, dtype = torch.float64) ** 2
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype = torch.float64) ** 2
def sigmoid_beta_schedule(timesteps):
@@ -384,8 +378,8 @@ def sigmoid_beta_schedule(timesteps):
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
class BaseGaussianDiffusion(nn.Module):
def __init__(self, *, beta_schedule, timesteps, loss_type):
class NoiseScheduler(nn.Module):
def __init__(self, *, beta_schedule, timesteps, loss_type, p2_loss_weight_gamma = 0., p2_loss_weight_k = 1):
super().__init__()
if beta_schedule == "cosine":
@@ -450,6 +444,11 @@ class BaseGaussianDiffusion(nn.Module):
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
# p2 loss reweighting
self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0.
register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
@@ -473,11 +472,10 @@ class BaseGaussianDiffusion(nn.Module):
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def sample(self, *args, **kwargs):
raise NotImplementedError
def forward(self, *args, **kwargs):
raise NotImplementedError
def p2_reweigh_loss(self, loss, times):
if not self.has_p2_loss_reweighting:
return loss
return loss * extract(self.p2_loss_weight, times, loss.shape)
# diffusion prior
@@ -688,8 +686,7 @@ class Attention(nn.Module):
# attention
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
attn = self.dropout(attn)
# aggregate values
@@ -863,7 +860,7 @@ class DiffusionPriorNetwork(nn.Module):
return pred_image_embed
class DiffusionPrior(BaseGaussianDiffusion):
class DiffusionPrior(nn.Module):
def __init__(
self,
net,
@@ -884,7 +881,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
image_embed_scale = None, # this is for scaling the l2-normed image embedding, so it is more suitable for gaussian diffusion, as outlined by Katherine (@crowsonkb) https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132
clip_adapter_overrides = dict()
):
super().__init__(
super().__init__()
self.noise_scheduler = NoiseScheduler(
beta_schedule = beta_schedule,
timesteps = timesteps,
loss_type = loss_type
@@ -924,6 +923,13 @@ class DiffusionPrior(BaseGaussianDiffusion):
self.training_clamp_l2norm = training_clamp_l2norm
self.init_image_embed_l2norm = init_image_embed_l2norm
# device tracker
self.register_buffer('_dummy', torch.tensor([True]), persistent = False)
@property
def device(self):
return self._dummy.device
def p_mean_variance(self, x, t, text_cond, clip_denoised = False, cond_scale = 1.):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
@@ -934,7 +940,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# not 100% sure of this above line - for any spectators, let me know in the github issues (or through a pull request) if you know how to correctly do this
# i'll be rereading https://arxiv.org/abs/2111.14822, where i think a similar approach is taken
else:
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
x_recon = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised and not self.predict_x_start:
x_recon.clamp_(-1., 1.)
@@ -942,21 +948,21 @@ class DiffusionPrior(BaseGaussianDiffusion):
if self.predict_x_start and self.sampling_clamp_l2norm:
x_recon = l2norm(x_recon) * self.image_embed_scale
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False, cond_scale = 1.):
def p_sample(self, x, t, text_cond = None, clip_denoised = True, cond_scale = 1.):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised, cond_scale = cond_scale)
noise = noise_like(x.shape, device, repeat_noise)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, text_cond, cond_scale = 1.):
device = self.betas.device
device = self.device
b = shape[0]
image_embed = torch.randn(shape, device=device)
@@ -964,7 +970,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
if self.init_image_embed_l2norm:
image_embed = l2norm(image_embed) * self.image_embed_scale
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps):
times = torch.full((b,), i, device = device, dtype = torch.long)
image_embed = self.p_sample(image_embed, times, text_cond = text_cond, cond_scale = cond_scale)
@@ -973,7 +979,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
def p_losses(self, image_embed, times, text_cond, noise = None):
noise = default(noise, lambda: torch.randn_like(image_embed))
image_embed_noisy = self.q_sample(x_start = image_embed, t = times, noise = noise)
image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise)
pred = self.net(
image_embed_noisy,
@@ -987,7 +993,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
target = noise if not self.predict_x_start else image_embed
loss = self.loss_fn(pred, target)
loss = self.noise_scheduler.loss_fn(pred, target)
return loss
@torch.no_grad()
@@ -998,7 +1004,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
img = torch.randn(shape, device = device)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = self.noise_scheduler.num_timesteps):
img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale)
return img
@@ -1070,7 +1076,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
# timestep conditioning from ddpm
batch, device = image_embed.shape[0], image_embed.device
times = torch.randint(0, self.num_timesteps, (batch,), device = device, dtype = torch.long)
times = torch.randint(0, self.noise_scheduler.num_timesteps, (batch,), device = device, dtype = torch.long)
# scale image embed (Katherine)
@@ -1085,8 +1091,9 @@ class DiffusionPrior(BaseGaussianDiffusion):
def Upsample(dim):
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def Downsample(dim):
return nn.Conv2d(dim, dim, 4, 2, 1)
def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Conv2d(dim, dim_out, 4, 2, 1)
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
@@ -1234,8 +1241,7 @@ class CrossAttention(nn.Module):
mask = rearrange(mask, 'b j -> b 1 1 j')
sim = sim.masked_fill(~mask, max_neg_value)
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
attn = sim.softmax(dim = -1)
attn = sim.softmax(dim = -1, dtype = torch.float32)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -1352,6 +1358,7 @@ class Unet(nn.Module):
init_cross_embed_kernel_sizes = (3, 7, 15),
cross_embed_downsample = False,
cross_embed_downsample_kernel_sizes = (2, 4),
memory_efficient = False,
**kwargs
):
super().__init__()
@@ -1371,7 +1378,7 @@ class Unet(nn.Module):
self.channels_out = default(channels_out, channels)
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
init_dim = default(init_dim, dim // 3 * 2)
init_dim = default(init_dim, dim)
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
@@ -1428,6 +1435,7 @@ class Unet(nn.Module):
# for classifier free guidance
self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim))
self.null_image_hiddens = nn.Parameter(torch.randn(1, time_cond_dim))
self.max_text_len = max_text_len
self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim))
@@ -1461,10 +1469,11 @@ class Unet(nn.Module):
layer_cond_dim = cond_dim if not is_first else None
self.downs.append(nn.ModuleList([
ResnetBlock(dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
ResnetBlock(dim_out if memory_efficient else dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
downsample_klass(dim_out) if not is_last else nn.Identity()
downsample_klass(dim_out) if not is_last and not memory_efficient else None
]))
mid_dim = dims[-1]
@@ -1473,19 +1482,19 @@ class Unet(nn.Module):
self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1])
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out[1:]), reversed(resnet_groups), reversed(num_resnet_blocks))):
is_last = ind >= (num_resolutions - 2)
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks))):
is_last = ind >= (len(in_out) - 1)
layer_cond_dim = cond_dim if not is_last else None
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
Upsample(dim_in)
Upsample(dim_in) if not is_last or memory_efficient else nn.Identity()
]))
self.final_conv = nn.Sequential(
ResnetBlock(dim, dim, groups = resnet_groups[0]),
ResnetBlock(dim * 2, dim, groups = resnet_groups[0]),
nn.Conv2d(dim, self.channels_out, 1)
)
@@ -1557,6 +1566,7 @@ class Unet(nn.Module):
# initial convolution
x = self.init_conv(x)
r = x.clone() # final residual
# time conditioning
@@ -1565,19 +1575,28 @@ class Unet(nn.Module):
time_tokens = self.to_time_tokens(time_hiddens)
t = self.to_time_cond(time_hiddens)
# image embedding to be summed to time embedding
# discovered by @mhh0318 in the paper
if exists(image_embed) and exists(self.to_image_hiddens):
image_hiddens = self.to_image_hiddens(image_embed)
t = t + image_hiddens
# conditional dropout
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
text_keep_mask = prob_mask_like((batch_size,), 1 - text_cond_drop_prob, device = device)
image_keep_mask, text_keep_mask = rearrange_many((image_keep_mask, text_keep_mask), 'b -> b 1 1')
text_keep_mask = rearrange(text_keep_mask, 'b -> b 1 1')
# image embedding to be summed to time embedding
# discovered by @mhh0318 in the paper
if exists(image_embed) and exists(self.to_image_hiddens):
image_hiddens = self.to_image_hiddens(image_embed)
image_keep_mask_hidden = rearrange(image_keep_mask, 'b -> b 1')
null_image_hiddens = self.null_image_hiddens.to(image_hiddens.dtype)
image_hiddens = torch.where(
image_keep_mask_hidden,
image_hiddens,
null_image_hiddens
)
t = t + image_hiddens
# mask out image embedding depending on condition dropout
# for classifier free guidance
@@ -1585,11 +1604,12 @@ class Unet(nn.Module):
image_tokens = None
if self.cond_on_image_embeds:
image_keep_mask_embed = rearrange(image_keep_mask, 'b -> b 1 1')
image_tokens = self.image_to_tokens(image_embed)
null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working
image_tokens = torch.where(
image_keep_mask,
image_keep_mask_embed,
image_tokens,
null_image_embed
)
@@ -1644,7 +1664,10 @@ class Unet(nn.Module):
hiddens = []
for init_block, sparse_attn, resnet_blocks, downsample in self.downs:
for pre_downsample, init_block, sparse_attn, resnet_blocks, post_downsample in self.downs:
if exists(pre_downsample):
x = pre_downsample(x)
x = init_block(x, c, t)
x = sparse_attn(x)
@@ -1652,7 +1675,9 @@ class Unet(nn.Module):
x = resnet_block(x, c, t)
hiddens.append(x)
x = downsample(x)
if exists(post_downsample):
x = post_downsample(x)
x = self.mid_block1(x, mid_c, t)
@@ -1662,7 +1687,7 @@ class Unet(nn.Module):
x = self.mid_block2(x, mid_c, t)
for init_block, sparse_attn, resnet_blocks, upsample in self.ups:
x = torch.cat((x, hiddens.pop()), dim=1)
x = torch.cat((x, hiddens.pop()), dim = 1)
x = init_block(x, c, t)
x = sparse_attn(x)
@@ -1671,13 +1696,14 @@ class Unet(nn.Module):
x = upsample(x)
x = torch.cat((x, r), dim = 1)
return self.final_conv(x)
class LowresConditioner(nn.Module):
def __init__(
self,
downsample_first = True,
blur_sigma = (0.1, 0.2),
blur_sigma = 0.6,
blur_kernel_size = 3,
):
super().__init__()
@@ -1719,7 +1745,7 @@ class LowresConditioner(nn.Module):
return cond_fmap
class Decoder(BaseGaussianDiffusion):
class Decoder(nn.Module):
def __init__(
self,
unet,
@@ -1732,7 +1758,7 @@ class Decoder(BaseGaussianDiffusion):
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
loss_type = 'l2',
beta_schedule = 'cosine',
beta_schedule = None,
predict_x_start = False,
predict_x_start_for_latent_diffusion = False,
image_sizes = None, # for cascading ddpm, image size at each stage
@@ -1750,13 +1776,11 @@ class Decoder(BaseGaussianDiffusion):
unconditional = False,
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
use_dynamic_thres = False, # from the Imagen paper
dynamic_thres_percentile = 0.9
dynamic_thres_percentile = 0.9,
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
p2_loss_weight_k = 1
):
super().__init__(
beta_schedule = beta_schedule,
timesteps = timesteps,
loss_type = loss_type
)
super().__init__()
self.unconditional = unconditional
@@ -1800,6 +1824,8 @@ class Decoder(BaseGaussianDiffusion):
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
unets = cast_tuple(unet)
num_unets = len(unets)
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper
@@ -1835,6 +1861,24 @@ class Decoder(BaseGaussianDiffusion):
self.unets.append(one_unet)
self.vaes.append(one_vae.copy_for_eval())
# create noise schedulers per unet
if not exists(beta_schedule):
beta_schedule = ('cosine', *(('cosine',) * max(num_unets - 2, 0)), *(('linear',) * int(num_unets > 1)))
self.noise_schedulers = nn.ModuleList([])
for unet_beta_schedule in beta_schedule:
noise_scheduler = NoiseScheduler(
beta_schedule = unet_beta_schedule,
timesteps = timesteps,
loss_type = loss_type,
p2_loss_weight_gamma = p2_loss_weight_gamma,
p2_loss_weight_k = p2_loss_weight_k
)
self.noise_schedulers.append(noise_scheduler)
# unet image sizes
image_sizes = default(image_sizes, (image_size,))
@@ -1884,6 +1928,14 @@ class Decoder(BaseGaussianDiffusion):
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
# device tracker
self.register_buffer('_dummy', torch.Tensor([True]), persistent = False)
@property
def device(self):
return self._dummy.device
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1
@@ -1907,7 +1959,7 @@ class Decoder(BaseGaussianDiffusion):
for unet, device in zip(self.unets, devices):
unet.to(device)
def p_mean_variance(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, text_mask = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img))
@@ -1918,7 +1970,7 @@ class Decoder(BaseGaussianDiffusion):
if predict_x_start:
x_recon = pred
else:
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
x_recon = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised:
# s is the threshold amount
@@ -1937,14 +1989,14 @@ class Decoder(BaseGaussianDiffusion):
# clip by threshold, depending on whether static or dynamic
x_recon = x_recon.clamp(-s, s) / s
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_recon, x_t=x, t=t)
if learned_variance:
# if learned variance, posterio variance and posterior log variance are predicted by the network
# by an interpolation of the max and min log beta values
# eq 15 - https://arxiv.org/abs/2102.09672
min_log = extract(self.posterior_log_variance_clipped, t, x.shape)
max_log = extract(torch.log(self.betas), t, x.shape)
min_log = extract(noise_scheduler.posterior_log_variance_clipped, t, x.shape)
max_log = extract(torch.log(noise_scheduler.betas), t, x.shape)
var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized)
if self.learned_variance_constrain_frac:
@@ -1956,17 +2008,17 @@ class Decoder(BaseGaussianDiffusion):
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, unet, x, t, image_embed, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, repeat_noise = False):
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, text_mask = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, learned_variance = learned_variance)
noise = noise_like(x.shape, device, repeat_noise)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, unet, shape, image_embed, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
device = self.betas.device
def p_sample_loop(self, unet, shape, image_embed, noise_scheduler, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, text_mask = None, cond_scale = 1, is_latent_diffusion = False):
device = self.device
b = shape[0]
img = torch.randn(shape, device = device)
@@ -1974,7 +2026,7 @@ class Decoder(BaseGaussianDiffusion):
if not is_latent_diffusion:
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
img = self.p_sample(
unet,
img,
@@ -1985,6 +2037,7 @@ class Decoder(BaseGaussianDiffusion):
cond_scale = cond_scale,
lowres_cond_img = lowres_cond_img,
predict_x_start = predict_x_start,
noise_scheduler = noise_scheduler,
learned_variance = learned_variance,
clip_denoised = clip_denoised
)
@@ -1992,7 +2045,7 @@ class Decoder(BaseGaussianDiffusion):
unnormalize_img = self.unnormalize_img(img)
return unnormalize_img
def p_losses(self, unet, x_start, times, *, image_embed, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, text_mask = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
noise = default(noise, lambda: torch.randn_like(x_start))
# normalize to [-1, 1]
@@ -2003,7 +2056,7 @@ class Decoder(BaseGaussianDiffusion):
# get x_t
x_noisy = self.q_sample(x_start = x_start, t = times, noise = noise)
x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise)
model_output = unet(
x_noisy,
@@ -2023,7 +2076,12 @@ class Decoder(BaseGaussianDiffusion):
target = noise if not predict_x_start else x_start
loss = self.loss_fn(pred, target)
loss = noise_scheduler.loss_fn(pred, target, reduction = 'none')
loss = reduce(loss, 'b ... -> b (...)', 'mean')
loss = noise_scheduler.p2_reweigh_loss(loss, times)
loss = loss.mean()
if not learned_variance:
# return simple loss if not using learned variance
@@ -2036,8 +2094,8 @@ class Decoder(BaseGaussianDiffusion):
# if learning the variance, also include the extra weight kl loss
true_mean, _, true_log_variance_clipped = self.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times)
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = model_output)
# kl loss with detached model predicted mean, for stability reasons as in paper
@@ -2069,7 +2127,8 @@ class Decoder(BaseGaussianDiffusion):
text_encodings = None,
batch_size = 1,
cond_scale = 1.,
stop_at_unet_number = None
stop_at_unet_number = None,
distributed = False,
):
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
@@ -2086,9 +2145,9 @@ class Decoder(BaseGaussianDiffusion):
img = None
is_cuda = next(self.parameters()).is_cuda
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance)):
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers)):
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
with context:
lowres_cond_img = None
@@ -2114,7 +2173,8 @@ class Decoder(BaseGaussianDiffusion):
learned_variance = learned_variance,
clip_denoised = not is_latent_diffusion,
lowres_cond_img = lowres_cond_img,
is_latent_diffusion = is_latent_diffusion
is_latent_diffusion = is_latent_diffusion,
noise_scheduler = noise_scheduler
)
img = vae.decode(img)
@@ -2140,6 +2200,7 @@ class Decoder(BaseGaussianDiffusion):
unet = self.get_unet(unet_number)
vae = self.vaes[unet_index]
noise_scheduler = self.noise_schedulers[unet_index]
target_image_size = self.image_sizes[unet_index]
predict_x_start = self.predict_x_start[unet_index]
random_crop_size = self.random_crop_sizes[unet_index]
@@ -2149,7 +2210,7 @@ class Decoder(BaseGaussianDiffusion):
check_shape(image, 'b c h w', c = self.channels)
assert h >= target_image_size and w >= target_image_size
times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long)
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
if not exists(image_embed) and not self.unconditional:
assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init'
@@ -2180,7 +2241,7 @@ class Decoder(BaseGaussianDiffusion):
image = vae.encode(image)
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion)
return self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, text_mask = text_mask, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler)
# main class

View File

@@ -164,9 +164,6 @@ class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface):
# There may be webdataset shards that do not have a embedding shard associated with it. If we do not skip these, they would cause issues.
self.append(skip_unassociated_shards(embeddings_url=embedding_folder_url, handler=handler))
self.append(wds.split_by_node)
self.append(wds.split_by_worker)
self.append(wds.tarfile_to_samples(handler=handler))
self.append(wds.decode("pilrgb", handler=handler))
if embedding_folder_url is not None:

View File

@@ -17,15 +17,15 @@ DEFAULT_DATA_PATH = './.tracker-data'
def exists(val):
return val is not None
# load state dict functions
# load file functions
def load_wandb_state_dict(run_path, file_path, **kwargs):
def load_wandb_file(run_path, file_path, **kwargs):
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
file_reference = wandb.restore(file_path, run_path=run_path)
return torch.load(file_reference.name)
return file_reference.name
def load_local_state_dict(file_path, **kwargs):
return torch.load(file_path)
def load_local_file(file_path, **kwargs):
return file_path
# base class
@@ -55,12 +55,43 @@ class BaseTracker(nn.Module):
"""
# TODO: Pull this into a dict or something similar so that we can add more sources without having a massive switch statement
if recall_source == 'wandb':
return load_wandb_state_dict(*args, **kwargs)
return torch.load(load_wandb_file(*args, **kwargs))
elif recall_source == 'local':
return load_local_state_dict(*args, **kwargs)
return torch.load(load_local_file(*args, **kwargs))
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
def save_file(self, file_path, **kwargs):
raise NotImplementedError
def recall_file(self, recall_source, *args, **kwargs):
if recall_source == 'wandb':
return load_wandb_file(*args, **kwargs)
elif recall_source == 'local':
return load_local_file(*args, **kwargs)
else:
raise ValueError('`recall_source` must be one of `wandb` or `local`')
# Tracker that no-ops all calls except for recall
class DummyTracker(BaseTracker):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def init(self, config, **kwargs):
pass
def log(self, log, **kwargs):
pass
def log_images(self, images, **kwargs):
pass
def save_state_dict(self, state_dict, relative_path, **kwargs):
pass
def save_file(self, file_path, **kwargs):
pass
# basic stdout class
@@ -76,6 +107,10 @@ class ConsoleTracker(BaseTracker):
def save_state_dict(self, state_dict, relative_path, **kwargs):
torch.save(state_dict, str(self.data_path / relative_path))
def save_file(self, file_path, **kwargs):
# This is a no-op for local file systems since it is already saved locally
pass
# basic wandb class
@@ -107,3 +142,11 @@ class WandbTracker(BaseTracker):
full_path = str(self.data_path / relative_path)
torch.save(state_dict, full_path)
self.wandb.save(full_path, base_path = str(self.data_path)) # Upload and keep relative to data_path
def save_file(self, file_path, base_path=None, **kwargs):
"""
Uploads a file from disk to wandb
"""
if base_path is None:
base_path = self.data_path
self.wandb.save(str(file_path), base_path = str(base_path))

View File

@@ -173,7 +173,7 @@ class DecoderConfig(BaseModel):
channels: int = 3
timesteps: int = 1000
loss_type: str = 'l2'
beta_schedule: str = 'cosine'
beta_schedule: ListOrTuple(str) = 'cosine'
learned_variance: bool = True
image_cond_drop_prob: float = 0.1
text_cond_drop_prob: float = 0.5
@@ -261,6 +261,7 @@ class TrainDecoderConfig(BaseModel):
evaluate: DecoderEvaluateConfig
tracker: TrackerConfig
load: DecoderLoadConfig
seed: int = 0
@classmethod
def from_json_path(cls, json_path):

View File

@@ -14,6 +14,8 @@ from dalle2_pytorch.optimizer import get_optimizer
from dalle2_pytorch.version import __version__
from packaging import version
from accelerate import Accelerator
import numpy as np
# helper functions
@@ -22,7 +24,9 @@ def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
if exists(val):
return val
return d() if callable(d) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
@@ -189,13 +193,13 @@ class EMA(nn.Module):
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 1.
@@ -205,7 +209,7 @@ class EMA(nn.Module):
self,
model,
beta = 0.9999,
update_after_step = 10000,
update_after_step = 100,
update_every = 10,
inv_gamma = 1.0,
power = 2/3,
@@ -280,6 +284,7 @@ class EMA(nn.Module):
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
# diffusion prior trainer
def prior_sample_in_chunks(fn):
@@ -303,88 +308,189 @@ class DiffusionPriorTrainer(nn.Module):
max_grad_norm = None,
amp = False,
group_wd_params = True,
device = None,
accelerator = None,
**kwargs
):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
assert exists(accelerator) or exists(device), "You must supply some method of obtaining a device."
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
# assign some helpful member vars
self.accelerator = accelerator
self.device = accelerator.device if exists(accelerator) else device
self.text_conditioned = diffusion_prior.condition_on_text_encodings
# save model
self.diffusion_prior = diffusion_prior
# exponential moving average
self.use_ema = use_ema
if self.use_ema:
self.ema_diffusion_prior = EMA(diffusion_prior, **ema_kwargs)
# optimizer and mixed precision stuff
self.amp = amp
self.scaler = GradScaler(enabled = amp)
self.optim_kwargs = dict(lr=lr, wd=wd, eps=eps, group_wd_params=group_wd_params)
self.optimizer = get_optimizer(
diffusion_prior.parameters(),
lr = lr,
wd = wd,
eps = eps,
group_wd_params = group_wd_params,
self.diffusion_prior.parameters(),
**self.optim_kwargs,
**kwargs
)
# distribute the model if using HFA
if exists(self.accelerator):
self.diffusion_prior, self.optimizer = self.accelerator.prepare(self.diffusion_prior, self.optimizer)
# exponential moving average stuff
self.use_ema = use_ema
if self.use_ema:
self.ema_diffusion_prior = EMA(self.unwrap_model(self.diffusion_prior), **ema_kwargs)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
# track steps internally
self.register_buffer('step', torch.tensor([0]))
# accelerator wrappers
def print(self, msg):
if exists(self.accelerator):
self.accelerator.print(msg)
else:
print(msg)
def unwrap_model(self, model):
if exists(self.accelerator):
return self.accelerator.unwrap_model(model)
else:
return model
def wait_for_everyone(self):
if exists(self.accelerator):
self.accelerator.wait_for_everyone()
def is_main_process(self):
if exists(self.accelerator):
return self.accelerator.is_main_process
else:
return True
def clip_grad_norm_(self, *args):
if exists(self.accelerator):
return self.accelerator.clip_grad_norm_(*args)
else:
return torch.nn.utils.clip_grad_norm_(*args)
def backprop(self, x):
if exists(self.accelerator):
self.accelerator.backward(x)
else:
try:
x.backward()
except Exception as e:
self.print(f"Caught error in backprop call: {e}")
# utility
def save(self, path, overwrite = True, **kwargs):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
# ensure we sync gradients before continuing
self.wait_for_everyone()
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.diffusion_prior.state_dict(),
version = __version__,
step = self.step.item(),
**kwargs
)
# only save on the main process
if self.is_main_process():
self.print(f"Saving checkpoint at step: {self.step.item()}")
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
save_obj = dict(
scaler = self.scaler.state_dict(),
optimizer = self.optimizer.state_dict(),
model = self.unwrap_model(self.diffusion_prior).state_dict(), # unwrap the model from distribution if applicable
version = version.parse(__version__),
step = self.step.item(),
**kwargs
)
torch.save(save_obj, str(path))
if self.use_ema:
save_obj = {
**save_obj,
'ema': self.ema_diffusion_prior.state_dict(),
'ema_model': self.ema_diffusion_prior.ema_model.state_dict() # save the ema model specifically for easy ema-only reload
}
def load(self, path, only_model = False, strict = True):
torch.save(save_obj, str(path))
def load(self, path, overwrite_lr = True, strict = True):
"""
Load a checkpoint of a diffusion prior trainer.
Will load the entire trainer, including the optimizer and EMA.
Params:
- path (str): a path to the DiffusionPriorTrainer checkpoint file
- overwrite_lr (bool): wether or not to overwrite the stored LR with the LR specified in the new trainer
- strict (bool): kwarg for `torch.nn.Module.load_state_dict`, will force an exact checkpoint match
Returns:
loaded_obj (dict): The loaded checkpoint dictionary
"""
# all processes need to load checkpoint. no restriction here
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
loaded_obj = torch.load(str(path), map_location=self.device)
if version.parse(__version__) != loaded_obj['version']:
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
# unwrap the model when loading from checkpoint
self.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return loaded_obj
self.scaler.load_state_dict(loaded_obj['scaler'])
self.optimizer.load_state_dict(loaded_obj['optimizer'])
if overwrite_lr:
new_lr = self.optim_kwargs["lr"]
self.print(f"Overriding LR to be {new_lr}")
for group in self.optimizer.param_groups:
group["lr"] = new_lr
if self.use_ema:
assert 'ema' in loaded_obj
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
# below not be necessary, but I had a suspicion that this wasn't being loaded correctly
self.ema_diffusion_prior.ema_model.load_state_dict(loaded_obj["ema_model"])
# sync and inform
self.wait_for_everyone()
self.print(f"Loaded model")
return loaded_obj
# model functionality
def update(self):
# only continue with updates until all ranks finish
self.wait_for_everyone()
if exists(self.max_grad_norm):
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
# utilize HFA clipping where applicable
self.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
self.scaler.step(self.optimizer)
self.scaler.update()
@@ -399,17 +505,32 @@ class DiffusionPriorTrainer(nn.Module):
@cast_torch_tensor
@prior_sample_in_chunks
def p_sample_loop(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
if self.use_ema:
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
else:
return self.diffusion_prior.p_sample_loop(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def sample(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
if self.use_ema:
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
else:
return self.diffusion_prior.sample(*args, **kwargs)
@torch.no_grad()
def sample_batch_size(self, *args, **kwargs):
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
if self.use_ema:
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
else:
return self.diffusion_prior.sample_batch_size(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def embed_text(self, *args, **kwargs):
return self.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs)
@cast_torch_tensor
def forward(
@@ -427,8 +548,10 @@ class DiffusionPriorTrainer(nn.Module):
total_loss += loss.item()
# backprop with accelerate if applicable
if self.training:
self.scaler.scale(loss).backward()
self.backprop(self.scaler.scale(loss))
return total_loss
@@ -454,6 +577,7 @@ class DecoderTrainer(nn.Module):
def __init__(
self,
decoder,
accelerator = None,
use_ema = True,
lr = 1e-4,
wd = 1e-2,
@@ -467,8 +591,9 @@ class DecoderTrainer(nn.Module):
assert isinstance(decoder, Decoder)
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
self.decoder = decoder
self.num_unets = len(self.decoder.unets)
self.accelerator = default(accelerator, Accelerator)
self.num_unets = len(decoder.unets)
self.use_ema = use_ema
self.ema_unets = nn.ModuleList([])
@@ -480,7 +605,9 @@ class DecoderTrainer(nn.Module):
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
optimizers = []
for unet, unet_lr, unet_wd, unet_eps in zip(decoder.unets, lr, wd, eps):
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
@@ -490,67 +617,66 @@ class DecoderTrainer(nn.Module):
**kwargs
)
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
optimizers.append(optimizer)
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = amp)
setattr(self, f'scaler{ind}', scaler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
self.register_buffer('step', torch.tensor([0.]))
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
self.decoder = decoder
for opt_ind, optimizer in zip(range(len(optimizers)), optimizers):
setattr(self, f'optim{opt_ind}', optimizer)
def save(self, path, overwrite = True, **kwargs):
path = Path(path)
assert not (path.exists() and not overwrite)
path.parent.mkdir(parents = True, exist_ok = True)
save_obj = dict(
model = self.decoder.state_dict(),
model = self.accelerator.unwrap_model(self.decoder).state_dict(),
version = __version__,
step = self.step.item(),
**kwargs
)
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key)
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
save_obj = {**save_obj, optimizer_key: self.accelerator.unwrap_model(optimizer).state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
torch.save(save_obj, str(path))
self.accelerator.save(save_obj, str(path))
def load(self, path, only_model = False, strict = True):
path = Path(path)
assert path.exists()
loaded_obj = torch.load(str(path))
loaded_obj = torch.load(str(path), map_location = 'cpu')
if version.parse(__version__) != loaded_obj['version']:
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
if version.parse(__version__) != version.parse(loaded_obj['version']):
self.accelerator.print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
self.accelerator.unwrap_model(self.decoder).load_state_dict(loaded_obj['model'], strict = strict)
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
if only_model:
return loaded_obj
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'scaler{ind}'
scaler = getattr(self, scaler_key)
optimizer_key = f'optim{ind}'
optimizer = getattr(self, optimizer_key)
scaler.load_state_dict(loaded_obj[scaler_key])
optimizer.load_state_dict(loaded_obj[optimizer_key])
self.accelerator.unwrap_model(optimizer).load_state_dict(loaded_obj[optimizer_key])
if self.use_ema:
assert 'ema' in loaded_obj
@@ -562,29 +688,18 @@ class DecoderTrainer(nn.Module):
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def scale(self, loss, *, unet_number):
assert 1 <= unet_number <= self.num_unets
index = unet_number - 1
scaler = getattr(self, f'scaler{index}')
return scaler.scale(loss)
def update(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
index = unet_number - 1
unet = self.decoder.unets[index]
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
if exists(self.max_grad_norm):
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
scaler.step(optimizer)
scaler.update()
self.accelerator.clip_grad_norm_(self.decoder.parameters(), self.max_grad_norm) # Automatically unscales gradients
optimizer.step()
optimizer.zero_grad()
if self.use_ema:
@@ -597,15 +712,17 @@ class DecoderTrainer(nn.Module):
@cast_torch_tensor
@decoder_sample_in_chunks
def sample(self, *args, **kwargs):
distributed = self.accelerator.num_processes > 1
base_decoder = self.accelerator.unwrap_model(self.decoder)
if kwargs.pop('use_non_ema', False) or not self.use_ema:
return self.decoder.sample(*args, **kwargs)
return base_decoder.sample(*args, **kwargs, distributed = distributed)
trainable_unets = self.decoder.unets
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
output = self.decoder.sample(*args, **kwargs)
output = base_decoder.sample(*args, **kwargs, distributed = distributed)
self.decoder.unets = trainable_unets # restore original training unets
base_decoder.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
@@ -627,13 +744,14 @@ class DecoderTrainer(nn.Module):
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with autocast(enabled = self.amp):
# with autocast(enabled = self.amp):
with self.accelerator.autocast():
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.scale(loss, unet_number = unet_number).backward()
self.accelerator.backward(loss)
return total_loss

View File

@@ -1,4 +1,5 @@
import time
import importlib
# time helpers

View File

@@ -1 +1 @@
__version__ = '0.6.15'
__version__ = '0.11.1'

View File

@@ -68,8 +68,8 @@ def group_dict_by_key(cond, d):
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def string_begins_with(prefix, string_input):
return string_input.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)

View File

@@ -24,6 +24,7 @@ setup(
'text to image'
],
install_requires=[
'accelerate',
'click',
'clip-anytorch',
'coca-pytorch>=0.0.5',

View File

@@ -1,7 +1,8 @@
from dalle2_pytorch import Unet, Decoder
from pathlib import Path
from dalle2_pytorch.trainer import DecoderTrainer
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker
from dalle2_pytorch.trackers import WandbTracker, ConsoleTracker, DummyTracker
from dalle2_pytorch.train_configs import TrainDecoderConfig
from dalle2_pytorch.utils import Timer, print_ribbon
from dalle2_pytorch.dalle2_pytorch import resize_image_to
@@ -12,6 +13,8 @@ from torchmetrics.image.fid import FrechetInceptionDistance
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.kid import KernelInceptionDistance
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import dataclasses as accelerate_dataclasses
import webdataset as wds
import click
@@ -42,6 +45,7 @@ def create_dataloaders(
train_prop = 0.75,
val_prop = 0.15,
test_prop = 0.10,
seed = 0,
**kwargs
):
"""
@@ -52,7 +56,7 @@ def create_dataloaders(
num_test = round(test_prop*len(available_shards))
num_val = len(available_shards) - num_train - num_test
assert num_train + num_test + num_val == len(available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(available_shards)}"
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(0))
train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(seed))
# The shard number in the webdataset file names has a fixed width. We zero pad the shard numbers so they correspond to a filename.
train_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in train_split]
@@ -117,7 +121,6 @@ def get_example_data(dataloader, device, n=5):
captions.extend(list(txt))
if len(images) >= n:
break
print("Generated {} examples".format(len(images)))
return list(zip(images[:n], embeddings[:n], captions[:n]))
def generate_samples(trainer, example_data, text_prepend=""):
@@ -155,27 +158,34 @@ def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID
metrics = {}
# Prepare the data
examples = get_example_data(dataloader, device, n_evaluation_samples)
if len(examples) == 0:
print("No data to evaluate. Check that your dataloader has shards.")
return metrics
real_images, generated_images, captions = generate_samples(trainer, examples)
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8)
def null_sync(t, *args, **kwargs):
return [t]
if exists(FID):
fid = FrechetInceptionDistance(**FID)
fid = FrechetInceptionDistance(**FID, dist_sync_fn=null_sync)
fid.to(device=device)
fid.update(int_real_images, real=True)
fid.update(int_generated_images, real=False)
metrics["FID"] = fid.compute().item()
if exists(IS):
inception = InceptionScore(**IS)
inception = InceptionScore(**IS, dist_sync_fn=null_sync)
inception.to(device=device)
inception.update(int_real_images)
is_mean, is_std = inception.compute()
metrics["IS_mean"] = is_mean.item()
metrics["IS_std"] = is_std.item()
if exists(KID):
kernel_inception = KernelInceptionDistance(**KID)
kernel_inception = KernelInceptionDistance(**KID, dist_sync_fn=null_sync)
kernel_inception.to(device=device)
kernel_inception.update(int_real_images, real=True)
kernel_inception.update(int_generated_images, real=False)
@@ -186,39 +196,47 @@ def evaluate_trainer(trainer, dataloader, device, n_evaluation_samples=1000, FID
# Convert from [0, 1] to [-1, 1]
renorm_real_images = real_images.mul(2).sub(1)
renorm_generated_images = generated_images.mul(2).sub(1)
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS)
lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS, dist_sync_fn=null_sync)
lpips.to(device=device)
lpips.update(renorm_real_images, renorm_generated_images)
metrics["LPIPS"] = lpips.compute().item()
if trainer.accelerator.num_processes > 1:
# Then we should sync the metrics
metrics_order = sorted(metrics.keys())
metrics_tensor = torch.zeros(1, len(metrics), device=device, dtype=torch.float)
for i, metric_name in enumerate(metrics_order):
metrics_tensor[0, i] = metrics[metric_name]
metrics_tensor = trainer.accelerator.gather(metrics_tensor)
metrics_tensor = metrics_tensor.mean(dim=0)
for i, metric_name in enumerate(metrics_order):
metrics[metric_name] = metrics_tensor[i].item()
return metrics
def save_trainer(tracker, trainer, epoch, step, validation_losses, relative_paths):
def save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, relative_paths):
"""
Logs the model with an appropriate method depending on the tracker
"""
if isinstance(relative_paths, str):
relative_paths = [relative_paths]
trainer_state_dict = {}
trainer_state_dict["trainer"] = trainer.state_dict()
trainer_state_dict['epoch'] = epoch
trainer_state_dict['step'] = step
trainer_state_dict['validation_losses'] = validation_losses
for relative_path in relative_paths:
tracker.save_state_dict(trainer_state_dict, relative_path)
local_path = str(tracker.data_path / relative_path)
trainer.save(local_path, epoch=epoch, sample=sample, next_task=next_task, validation_losses=validation_losses)
tracker.save_file(local_path)
def recall_trainer(tracker, trainer, recall_source=None, **load_config):
"""
Loads the model with an appropriate method depending on the tracker
"""
print(print_ribbon(f"Loading model from {recall_source}"))
state_dict = tracker.recall_state_dict(recall_source, **load_config)
trainer.load_state_dict(state_dict["trainer"])
print("Model loaded")
return state_dict["epoch"], state_dict["step"], state_dict["validation_losses"]
trainer.accelerator.print(print_ribbon(f"Loading model from {recall_source}"))
local_filepath = tracker.recall_file(recall_source, **load_config)
state_dict = trainer.load(local_filepath)
return state_dict.get("epoch", 0), state_dict.get("validation_losses", []), state_dict.get("next_task", "train"), state_dict.get("sample", 0)
def train(
dataloaders,
decoder,
accelerator,
tracker,
inference_device,
load_config=None,
@@ -237,17 +255,30 @@ def train(
"""
Trains a decoder on a dataset.
"""
trainer = DecoderTrainer( # TODO: Change the get_optimizer function so that it can take arbitrary named args so we can just put **kwargs as an argument here
is_master = accelerator.process_index == 0
trainer = DecoderTrainer(
accelerator,
decoder,
**kwargs
)
# Set up starting model and parameters based on a recalled state dict
start_step = 0
start_epoch = 0
validation_losses = []
next_task = 'train'
sample = 0
val_sample = 0
step = lambda: int(trainer.step.item())
if exists(load_config) and exists(load_config.source):
start_epoch, start_step, validation_losses = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config)
start_epoch, validation_losses, next_task, recalled_sample = recall_trainer(tracker, trainer, recall_source=load_config.source, **load_config.dict())
if next_task == 'train':
sample = recalled_sample
if next_task == 'val':
val_sample = recalled_sample
accelerator.print(f"Loaded model from {load_config.source} on epoch {start_epoch} with minimum validation loss {min(validation_losses) if len(validation_losses) > 0 else 'N/A'}")
accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}")
trainer.to(device=inference_device)
if not exists(unet_training_mask):
@@ -255,139 +286,185 @@ def train(
unet_training_mask = [True] * trainer.num_unets
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
print(print_ribbon("Generating Example Data", repeat=40))
print("This can take a while to load the shard lists...")
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
accelerator.print("This can take a while to load the shard lists...")
if is_master:
train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images)
accelerator.print("Generated training examples")
test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images)
accelerator.print("Generated testing examples")
send_to_device = lambda arr: [x.to(device=inference_device, dtype=torch.float) for x in arr]
step = start_step
sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device)
unet_losses_tensor = torch.zeros(TRAIN_CALC_LOSS_EVERY_ITERS, trainer.num_unets, dtype=torch.float, device=inference_device)
for epoch in range(start_epoch, epochs):
print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
accelerator.print(print_ribbon(f"Starting epoch {epoch}", repeat=40))
timer = Timer()
last_sample = sample
last_snapshot = sample
sample = 0
last_sample = 0
last_snapshot = 0
if next_task == 'train':
for i, (img, emb) in enumerate(dataloaders["train"]):
# We want to count the total number of samples across all processes
sample_length_tensor[0] = len(img)
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
total_samples = all_samples.sum().item()
sample += total_samples
img, emb = send_to_device((img, emb))
losses = []
trainer.train()
for unet in range(1, trainer.num_unets+1):
# Check if this is a unet we are training
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
continue
for i, (img, emb) in enumerate(dataloaders["train"]):
step += 1
sample += img.shape[0]
img, emb = send_to_device((img, emb))
trainer.train()
for unet in range(1, trainer.num_unets+1):
# Check if this is a unet we are training
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
continue
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
trainer.update(unet_number=unet)
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
samples_per_sec = (sample - last_sample) / timer.elapsed()
timer.reset()
last_sample = sample
loss = trainer.forward(img, image_embed=emb, unet_number=unet)
trainer.update(unet_number=unet)
losses.append(loss)
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
# We want to average losses across all processes
unet_all_losses = accelerator.gather(unet_losses_tensor)
mask = unet_all_losses != 0
unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0)
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if loss != 0 }
log_data = {
"Epoch": epoch,
"Sample": sample,
"Step": i,
"Samples per second": samples_per_sec,
**loss_map
}
# print(f"I am rank {accelerator.state.process_index}. Example weight: {trainer.decoder.state_dict()['module.unets.0.init_conv.convs.0.weight'][0,0,0,0]}")
if is_master:
tracker.log(log_data, step=step(), verbose=True)
samples_per_sec = (sample - last_sample) / timer.elapsed()
if is_master and last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
# It is difficult to gather this kind of info on the accelerator, so we have to do it on the master
print("Saving snapshot")
last_snapshot = sample
# We need to know where the model should be saved
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_all:
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step()}.pth")
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, save_paths)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
if epoch_samples is not None and sample >= epoch_samples:
break
next_task = 'val'
sample = 0
timer.reset()
last_sample = sample
all_average_val_losses = None
if next_task == 'val':
trainer.eval()
accelerator.print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
last_val_sample = val_sample
val_sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device)
average_val_loss_tensor = torch.zeros(1, trainer.num_unets, dtype=torch.float, device=inference_device)
timer = Timer()
accelerator.wait_for_everyone()
i = 0
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
val_sample_length_tensor[0] = len(img)
all_samples = accelerator.gather(val_sample_length_tensor)
total_samples = all_samples.sum().item()
val_sample += total_samples
img, emb = send_to_device((img, emb))
if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0:
average_loss = sum(losses) / len(losses)
log_data = {
"Training loss": average_loss,
"Epoch": epoch,
"Sample": sample,
"Step": i,
"Samples per second": samples_per_sec
}
tracker.log(log_data, step=step, verbose=True)
losses = []
for unet in range(1, len(decoder.unets)+1):
if not unet_training_mask[unet-1]: # Unet index is the unet number - 1
# No need to evaluate an unchanging unet
continue
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
average_val_loss_tensor[0, unet-1] += loss
if last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
last_snapshot = sample
# We need to know where the model should be saved
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
samples_per_sec = (val_sample - last_val_sample) / timer.elapsed()
timer.reset()
last_val_sample = val_sample
accelerator.print(f"Epoch {epoch}/{epochs} Val Step {i} - Sample {val_sample} - {samples_per_sec:.2f} samples/sec")
accelerator.print(f"Loss: {(average_val_loss_tensor / (i+1))}")
accelerator.print("")
if validation_samples is not None and val_sample >= validation_samples:
break
print(f"Rank {accelerator.state.process_index} finished validation after {i} steps")
accelerator.wait_for_everyone()
average_val_loss_tensor /= i+1
# Gather all the average loss tensors
all_average_val_losses = accelerator.gather(average_val_loss_tensor)
if is_master:
unet_average_val_loss = all_average_val_losses.mean(dim=0)
val_loss_map = { f"Unet {index} Validation Loss": loss.item() for index, loss in enumerate(unet_average_val_loss) if loss != 0 }
tracker.log(val_loss_map, step=step(), verbose=True)
next_task = 'eval'
if next_task == 'eval':
if exists(evaluate_config):
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict())
if is_master:
tracker.log(evaluation, step=step(), verbose=True)
next_task = 'sample'
val_sample = 0
if next_task == 'sample':
if is_master:
# Generate examples and save the model if we are the master
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
# Get the same paths
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_all:
save_paths.append(f"checkpoints/epoch_{epoch}_step_{step}.pth")
if all_average_val_losses is not None:
average_loss = all_average_val_losses.mean(dim=0).item()
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
save_paths.append("best.pth")
validation_losses.append(average_loss)
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, save_paths)
next_task = 'train'
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
if exists(n_sample_images) and n_sample_images > 0:
trainer.eval()
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
if exists(epoch_samples) and sample >= epoch_samples:
break
trainer.eval()
print(print_ribbon(f"Starting Validation {epoch}", repeat=40))
with torch.no_grad():
sample = 0
average_loss = 0
timer = Timer()
for i, (img, emb, *_) in enumerate(dataloaders["val"]):
sample += img.shape[0]
img, emb = send_to_device((img, emb))
for unet in range(1, len(decoder.unets)+1):
loss = trainer.forward(img.float(), image_embed=emb.float(), unet_number=unet)
average_loss += loss
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
print(f"Epoch {epoch}/{epochs} - {sample / timer.elapsed():.2f} samples/sec")
print(f"Loss: {average_loss / (i+1)}")
print("")
if exists(validation_samples) and sample >= validation_samples:
break
average_loss /= i+1
log_data = {
"Validation loss": average_loss
}
tracker.log(log_data, step=step, verbose=True)
# Compute evaluation metrics
if exists(evaluate_config):
print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict())
tracker.log(evaluation, step=step, verbose=True)
# Generate sample images
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
test_images, test_captions = generate_grid_samples(trainer, test_example_data, "Test: ")
train_images, train_captions = generate_grid_samples(trainer, train_example_data, "Train: ")
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step)
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step)
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
# Get the same paths
save_paths = []
if save_latest:
save_paths.append("latest.pth")
if save_best and (len(validation_losses) == 0 or average_loss < min(validation_losses)):
save_paths.append("best.pth")
validation_losses.append(average_loss)
save_trainer(tracker, trainer, epoch, step, validation_losses, save_paths)
def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
def create_tracker(accelerator, config, config_path, tracker_type=None, data_path=None):
"""
Creates a tracker of the specified type and initializes special features based on the full config
"""
tracker_config = config.tracker
init_config = {}
accelerator_config = {
"Distributed": accelerator.distributed_type != accelerate_dataclasses.DistributedType.NO,
"DistributedType": accelerator.distributed_type,
"NumProcesses": accelerator.num_processes,
"MixedPrecision": accelerator.mixed_precision
}
init_config = { "config": {**config.dict(), **accelerator_config} }
data_path = data_path or tracker_config.data_path
tracker_type = tracker_type or tracker_config.tracker_type
if exists(tracker_config.init_config):
init_config["config"] = tracker_config.init_config
if tracker_type == "console":
tracker = ConsoleTracker(**init_config)
if tracker_type == "dummy":
tracker = DummyTracker(data_path)
tracker.init(**init_config)
elif tracker_type == "console":
tracker = ConsoleTracker(data_path)
tracker.init(**init_config)
elif tracker_type == "wandb":
# We need to initialize the resume state here
load_config = config.load
@@ -401,51 +478,63 @@ def create_tracker(config, tracker_type=None, data_path=None, **kwargs):
init_config["project"] = tracker_config.wandb_project
tracker = WandbTracker(data_path)
tracker.init(**init_config)
tracker.save_file(str(config_path.absolute()), str(config_path.parent.absolute()))
else:
raise ValueError(f"Tracker type {tracker_type} not supported by decoder trainer")
return tracker
def initialize_training(config):
# Create the save path
if "cuda" in config.train.device:
assert torch.cuda.is_available(), "CUDA is not available"
device = torch.device(config.train.device)
torch.cuda.set_device(device)
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
def initialize_training(config, config_path):
# Make sure if we are not loading, distributed models are initialized to the same values
torch.manual_seed(config.seed)
# Set up accelerator for configurable distributed training
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
# Set up data
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
world_size = accelerator.num_processes
rank = accelerator.process_index
shards_per_process = len(all_shards) // world_size
assert shards_per_process > 0, "Not enough shards to split evenly"
my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process]
dataloaders = create_dataloaders (
available_shards=all_shards,
available_shards=my_shards,
img_preproc = config.data.img_preproc,
train_prop = config.data.splits.train,
val_prop = config.data.splits.val,
test_prop = config.data.splits.test,
n_sample_images=config.train.n_sample_images,
**config.data.dict()
**config.data.dict(),
rank = rank,
seed = config.seed,
)
decoder = config.decoder.create().to(device = device)
# Create the decoder model and print basic info
decoder = config.decoder.create()
num_parameters = sum(p.numel() for p in decoder.parameters())
print(print_ribbon("Loaded Config", repeat=40))
print(f"Number of parameters: {num_parameters}")
tracker = create_tracker(config, **config.tracker.dict())
# Create and initialize the tracker if we are the master
tracker = create_tracker(accelerator, config, config_path) if rank == 0 else create_tracker(accelerator, config, config_path, tracker_type="dummy")
train(dataloaders, decoder,
accelerator.print(print_ribbon("Loaded Config", repeat=40))
accelerator.print(f"Running training with {accelerator.num_processes} processes and {accelerator.distributed_type} distributed training")
accelerator.print(f"Number of parameters: {num_parameters}")
train(dataloaders, decoder, accelerator,
tracker=tracker,
inference_device=device,
inference_device=accelerator.device,
load_config=config.load,
evaluate_config=config.evaluate,
**config.train.dict(),
)
# Create a simple click command line interface to load the config and start the training
@click.command()
@click.option("--config_file", default="./train_decoder_config.json", help="Path to config file")
def main(config_file):
print("Recalling config from {}".format(config_file))
config = TrainDecoderConfig.from_json_path(config_file)
initialize_training(config)
config_file_path = Path(config_file)
config = TrainDecoderConfig.from_json_path(str(config_file_path))
initialize_training(config, config_path=config_file_path)
if __name__ == "__main__":
main()

View File

@@ -1,77 +1,135 @@
from pathlib import Path
# TODO: add start, num_data_points, eval_every and group to config
# TODO: switch back to repo's wandb
START = 0
NUM_DATA_POINTS = 250e6
EVAL_EVERY = 1000
GROUP = "distributed"
import os
import click
import math
import numpy as np
import wandb
import torch
import clip
from torch import nn
from torch.utils.data import DataLoader
from dalle2_pytorch.dataloaders import make_splits, get_reader
from dalle2_pytorch import DiffusionPrior, DiffusionPriorNetwork, OpenAIClipAdapter
from dalle2_pytorch.trainer import DiffusionPriorTrainer, load_diffusion_model, save_diffusion_model
import numpy as np
from dalle2_pytorch.trackers import ConsoleTracker, WandbTracker
from dalle2_pytorch.utils import Timer, print_ribbon
from accelerate import Accelerator
from tqdm import tqdm
from dalle2_pytorch.dataloaders import get_reader, make_splits
from dalle2_pytorch.utils import Timer
from dalle2_pytorch.train_configs import (
DiffusionPriorTrainConfig,
TrainDiffusionPriorConfig,
)
from dalle2_pytorch.trackers import BaseTracker, WandbTracker
from dalle2_pytorch import DiffusionPriorTrainer
# constants
REPORT_METRICS_EVERY = 250 # for cosine similarity and other metric reporting during training
# helpers
tracker = WandbTracker()
# helpers functions
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
def exists(val):
val is not None
return val is not None
# functions
def eval_model(model, dataloader, text_conditioned, loss_type, device, phase="Validation",):
model.eval()
def make_model(
prior_config, train_config, device: str = None, accelerator: Accelerator = None
):
# create model from config
diffusion_prior = prior_config.create()
# instantiate the trainer
trainer = DiffusionPriorTrainer(
diffusion_prior=diffusion_prior,
lr=train_config.lr,
wd=train_config.wd,
max_grad_norm=train_config.max_grad_norm,
amp=train_config.amp,
use_ema=train_config.use_ema,
device=device,
accelerator=accelerator,
)
return trainer
# eval functions
def eval_model(
trainer: DiffusionPriorTrainer,
dataloader: DataLoader,
text_conditioned: bool,
loss_type: str,
tracker_context: str,
tracker: BaseTracker = None,
use_ema: bool = True,
):
trainer.eval()
if trainer.is_main_process():
click.secho(f"Measuring performance on {tracker_context}", fg="green", blink=True)
with torch.no_grad():
total_loss = 0.
total_samples = 0.
total_loss = 0.0
total_samples = 0.0
for image_embeddings, text_data in tqdm(dataloader):
image_embeddings = image_embeddings.to(device)
text_data = text_data.to(device)
for image_embeddings, text_data in dataloader:
image_embeddings = image_embeddings.to(trainer.device)
text_data = text_data.to(trainer.device)
batches = image_embeddings.shape[0]
input_args = dict(image_embed=image_embeddings)
if text_conditioned:
input_args = dict(**input_args, text = text_data)
input_args = dict(**input_args, text=text_data)
else:
input_args = dict(**input_args, text_embed=text_data)
loss = model(**input_args)
if use_ema:
loss = trainer.ema_diffusion_prior(**input_args)
else:
loss = trainer(**input_args)
total_loss += loss * batches
total_samples += batches
avg_loss = (total_loss / total_samples)
avg_loss = total_loss / total_samples
tracker.log({f'{phase} {loss_type}': avg_loss})
stats = {f"{tracker_context}-{loss_type}": avg_loss}
trainer.print(stats)
def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
diffusion_prior.eval()
if exists(tracker):
tracker.log(stats, step=trainer.step.item() + 1)
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
for test_image_embeddings, text_data in tqdm(dataloader):
test_image_embeddings = test_image_embeddings.to(device)
text_data = text_data.to(device)
def report_cosine_sims(
trainer: DiffusionPriorTrainer,
dataloader: DataLoader,
text_conditioned: bool,
tracker: BaseTracker,
tracker_context: str = "validation",
):
trainer.eval()
if trainer.is_main_process():
click.secho("Measuring Cosine-Similarity", fg="green", blink=True)
for test_image_embeddings, text_data in dataloader:
test_image_embeddings = test_image_embeddings.to(trainer.device)
text_data = text_data.to(trainer.device)
# we are text conditioned, we produce an embedding from the tokenized text
if text_conditioned:
text_embedding, text_encodings, text_mask = diffusion_prior.clip.embed_text(
text_data)
text_cond = dict(text_embed=text_embedding,
text_encodings=text_encodings, mask=text_mask)
text_embedding, text_encodings, text_mask = trainer.embed_text(text_data)
text_cond = dict(
text_embed=text_embedding, text_encodings=text_encodings, mask=text_mask
)
else:
text_embedding = text_data
text_cond = dict(text_embed=text_embedding)
@@ -82,8 +140,9 @@ def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
# roll the text to simulate "unrelated" captions
rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1)
text_embed_shuffled = text_embed_shuffled[rolled_idx]
text_embed_shuffled = text_embed_shuffled / \
text_embed_shuffled.norm(dim=1, keepdim=True)
text_embed_shuffled = text_embed_shuffled / text_embed_shuffled.norm(
dim=1, keepdim=True
)
if text_conditioned:
text_encodings_shuffled = text_encodings[rolled_idx]
@@ -92,294 +151,276 @@ def report_cosine_sims(diffusion_prior, dataloader, text_conditioned, device):
text_encodings_shuffled = None
text_mask_shuffled = None
text_cond_shuffled = dict(text_embed=text_embed_shuffled,
text_encodings=text_encodings_shuffled, mask=text_mask_shuffled)
text_cond_shuffled = dict(
text_embed=text_embed_shuffled,
text_encodings=text_encodings_shuffled,
mask=text_mask_shuffled,
)
# prepare the text embedding
text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True)
# prepare image embeddings
test_image_embeddings = test_image_embeddings / \
test_image_embeddings.norm(dim=1, keepdim=True)
test_image_embeddings = test_image_embeddings / test_image_embeddings.norm(
dim=1, keepdim=True
)
# predict on the unshuffled text embeddings
predicted_image_embeddings = diffusion_prior.p_sample_loop(
test_image_embeddings.shape, text_cond)
predicted_image_embeddings = predicted_image_embeddings / \
predicted_image_embeddings.norm(dim=1, keepdim=True)
predicted_image_embeddings = trainer.p_sample_loop(
test_image_embeddings.shape, text_cond
)
predicted_image_embeddings = (
predicted_image_embeddings
/ predicted_image_embeddings.norm(dim=1, keepdim=True)
)
# predict on the shuffled embeddings
predicted_unrelated_embeddings = diffusion_prior.p_sample_loop(
test_image_embeddings.shape, text_cond_shuffled)
predicted_unrelated_embeddings = predicted_unrelated_embeddings / \
predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
predicted_unrelated_embeddings = trainer.p_sample_loop(
test_image_embeddings.shape, text_cond_shuffled
)
predicted_unrelated_embeddings = (
predicted_unrelated_embeddings
/ predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
)
# calculate similarities
original_similarity = cos(
text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(
text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = cos(
text_embed, predicted_unrelated_embeddings).cpu().numpy()
predicted_img_similarity = cos(
test_image_embeddings, predicted_image_embeddings).cpu().numpy()
tracker.log({"CosineSimilarity(text_embed,image_embed)": np.mean(original_similarity),
"CosineSimilarity(text_embed,predicted_image_embed)":np.mean(predicted_similarity),
"CosineSimilarity(orig_image_embed,predicted_image_embed)":np.mean(predicted_img_similarity),
"CosineSimilarity(text_embed,predicted_unrelated_embed)": np.mean(unrelated_similarity),
"Cosine similarity difference":np.mean(predicted_similarity - original_similarity)})
original_similarity = cos(text_embed, test_image_embeddings).cpu().numpy()
predicted_similarity = cos(text_embed, predicted_image_embeddings).cpu().numpy()
unrelated_similarity = (
cos(text_embed, predicted_unrelated_embeddings).cpu().numpy()
)
predicted_img_similarity = (
cos(test_image_embeddings, predicted_image_embeddings).cpu().numpy()
)
stats = {
f"{tracker_context}/baseline similarity": np.mean(original_similarity),
f"{tracker_context}/similarity with text": np.mean(predicted_similarity),
f"{tracker_context}/similarity with original image": np.mean(
predicted_img_similarity
),
f"{tracker_context}/similarity with unrelated caption": np.mean(unrelated_similarity),
f"{tracker_context}/difference from baseline similarity": np.mean(
predicted_similarity - original_similarity
),
}
for k, v in stats.items():
trainer.print(f"{tracker_context}/{k}: {v}")
if exists(tracker):
tracker.log(stats, step=trainer.step.item() + 1)
# training script
def train(
trainer: DiffusionPriorTrainer,
train_loader: DataLoader,
eval_loader: DataLoader,
test_loader: DataLoader,
config: DiffusionPriorTrainConfig,
):
# distributed tracking with wandb
if trainer.accelerator.num_processes > 1:
os.environ["WANDB_START_METHOD"] = "thread"
tracker = wandb.init(
name=f"RANK:{trainer.device}",
entity=config.tracker.wandb_entity,
project=config.tracker.wandb_project,
config=config.dict(),
group=GROUP,
)
# sync after tracker init
trainer.wait_for_everyone()
# init a timer
timer = Timer()
# do training
for img, txt in train_loader:
trainer.train()
current_step = trainer.step.item() + 1
# place data on device
img = img.to(trainer.device)
txt = txt.to(trainer.device)
# pass to model
loss = trainer(text=txt, image_embed=img)
# display & log loss (will only print from main process)
trainer.print(f"Step {current_step}: Loss {loss}")
# perform backprop & apply EMA updates
trainer.update()
# track samples/sec/rank
samples_per_sec = img.shape[0] / timer.elapsed()
# samples seen
samples_seen = (
config.data.batch_size * trainer.accelerator.num_processes * current_step
)
# ema decay
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
# Log on all processes for debugging
tracker.log(
{
"tracking/samples-sec": samples_per_sec,
"tracking/samples-seen": samples_seen,
"tracking/ema-decay": ema_decay,
"metrics/training-loss": loss,
},
step=current_step,
)
# Metric Tracking & Checkpointing (outside of timer's scope)
if current_step % EVAL_EVERY == 0:
eval_model(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="metrics/online-model-validation",
tracker=tracker,
use_ema=False,
)
eval_model(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="metrics/ema-model-validation",
tracker=tracker,
use_ema=True,
)
report_cosine_sims(
trainer=trainer,
dataloader=eval_loader,
text_conditioned=config.prior.condition_on_text_encodings,
tracker=tracker,
tracker_context="metrics",
)
if current_step % config.train.save_every == 0:
trainer.save(f"{config.tracker.data_path}/chkpt_step_{current_step}.pth")
# reset timer for next round
timer.reset()
# evaluate on test data
eval_model(
trainer=trainer,
dataloader=test_loader,
text_conditioned=config.prior.condition_on_text_encodings,
loss_type=config.prior.loss_type,
tracker_context="test",
tracker=tracker,
)
report_cosine_sims(
trainer,
test_loader,
config.prior.condition_on_text_encodings,
tracker,
tracker_context="test",
)
def initialize_training(config, accelerator=None):
"""
Parse the configuration file, and prepare everything necessary for training
"""
# get a device
if accelerator:
device = accelerator.device
click.secho(f"Accelerating on: {device}", fg="yellow")
else:
if torch.cuda.is_available():
click.secho("GPU detected, defaulting to cuda:0", fg="yellow")
device = "cuda:0"
else:
click.secho("No GPU detected...using cpu", fg="yellow")
device = "cpu"
# make the trainer (will automatically distribute if possible & configured)
trainer = make_model(config.prior, config.train, device, accelerator).to(device)
# reload from chcekpoint
if config.load.resume == True:
click.secho(f"Loading checkpoint: {config.load.source}", fg="cyan")
trainer.load(config.load.source)
# fetch and prepare data
if trainer.is_main_process():
click.secho("Grabbing data from source", fg="blue", blink=True)
img_reader = get_reader(
text_conditioned=trainer.text_conditioned,
img_url=config.data.image_url,
meta_url=config.data.meta_url,
)
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=trainer.text_conditioned,
batch_size=config.data.batch_size,
num_data_points=NUM_DATA_POINTS,
train_split=config.data.splits.train,
eval_split=config.data.splits.val,
image_reader=img_reader,
rank=accelerator.state.process_index if exists(accelerator) else 0,
world_size=accelerator.state.num_processes if exists(accelerator) else 1,
start=START,
)
# wait for everyone to load data before continuing
trainer.wait_for_everyone()
# start training
train(
trainer=trainer,
train_loader=train_loader,
eval_loader=eval_loader,
test_loader=test_loader,
config=config,
)
@click.command()
@click.option("--wandb-entity", default="laion")
@click.option("--wandb-project", default="diffusion-prior")
@click.option("--wandb-dataset", default="LAION-5B")
@click.option("--wandb-arch", default="DiffusionPrior")
@click.option("--image-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/img_emb/")
@click.option("--text-embed-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/text_emb/")
@click.option("--meta-url", default="https://mystic.the-eye.eu/public/AI/cah/laion5b/embeddings/laion2B-en/laion2B-en-metadata/")
@click.option("--learning-rate", default=1.1e-4)
@click.option("--weight-decay", default=6.02e-2)
@click.option("--dropout", default=5e-2)
@click.option("--max-grad-norm", default=0.5)
@click.option("--num-data-points", default=250e6)
@click.option("--batch-size", default=320)
@click.option("--num-epochs", default=5)
@click.option("--image-embed-dim", default=768)
@click.option("--train-percent", default=0.9)
@click.option("--val-percent", default=1e-7)
@click.option("--test-percent", default=0.0999999)
@click.option("--dpn-depth", default=12)
@click.option("--dpn-dim-head", default=64)
@click.option("--dpn-heads", default=12)
@click.option("--dp-condition-on-text-encodings", default=True)
@click.option("--dp-timesteps", default=1000)
@click.option("--dp-normformer", default=True)
@click.option("--dp-cond-drop-prob", default=0.1)
@click.option("--dp-loss-type", default="l2")
@click.option("--clip", default="ViT-L/14")
@click.option("--amp", default=False)
@click.option("--save-interval", default=120)
@click.option("--save-path", default="./diffusion_prior_checkpoints")
@click.option("--pretrained-model-path", default=None)
@click.option("--gpu-device", default=0)
def train(
wandb_entity,
wandb_project,
wandb_dataset,
wandb_arch,
image_embed_url,
text_embed_url,
meta_url,
learning_rate,
weight_decay,
dropout,
max_grad_norm,
num_data_points,
batch_size,
num_epochs,
image_embed_dim,
train_percent,
val_percent,
test_percent,
dpn_depth,
dpn_dim_head,
dpn_heads,
dp_condition_on_text_encodings,
dp_timesteps,
dp_normformer,
dp_cond_drop_prob,
dp_loss_type,
clip,
amp,
save_interval,
save_path,
pretrained_model_path,
gpu_device
):
config = {
"learning_rate": learning_rate,
"architecture": wandb_arch,
"dataset": wandb_dataset,
"weight_decay": weight_decay,
"max_gradient_clipping_norm": max_grad_norm,
"batch_size": batch_size,
"epochs": num_epochs,
"diffusion_prior_network": {
"depth": dpn_depth,
"dim_head": dpn_dim_head,
"heads": dpn_heads,
"normformer": dp_normformer
},
"diffusion_prior": {
"condition_on_text_encodings": dp_condition_on_text_encodings,
"timesteps": dp_timesteps,
"cond_drop_prob": dp_cond_drop_prob,
"loss_type": dp_loss_type,
"clip": clip
}
}
# Check if DPRIOR_PATH exists(saved model path)
DPRIOR_PATH = pretrained_model_path
RESUME = exists(DPRIOR_PATH)
if not RESUME:
tracker.init(
entity = wandb_entity,
project = wandb_project,
config = config
)
# Obtain the utilized device.
has_cuda = torch.cuda.is_available()
if has_cuda:
device = torch.device(f"cuda:{gpu_device}")
torch.cuda.set_device(device)
# Training loop
# diffusion prior network
prior_network = DiffusionPriorNetwork(
dim = image_embed_dim,
depth = dpn_depth,
dim_head = dpn_dim_head,
heads = dpn_heads,
attn_dropout = dropout,
ff_dropout = dropout,
normformer = dp_normformer
)
# Load clip model if text-conditioning
if dp_condition_on_text_encodings:
clip_adapter = OpenAIClipAdapter(clip)
@click.option("--hfa", default=True)
@click.option("--config_path", default="configs/prior.json")
def main(hfa, config_path):
# start HFA if requested
if hfa:
accelerator = Accelerator()
else:
clip_adapter = None
accelerator = None
# diffusion prior with text embeddings and image embeddings pre-computed
# load the configuration file on main process
if not exists(accelerator) or accelerator.is_main_process:
click.secho(f"Loading configuration from {config_path}", fg="green")
diffusion_prior = DiffusionPrior(
net = prior_network,
clip = clip_adapter,
image_embed_dim = image_embed_dim,
timesteps = dp_timesteps,
cond_drop_prob = dp_cond_drop_prob,
loss_type = dp_loss_type,
condition_on_text_encodings = dp_condition_on_text_encodings
)
config = TrainDiffusionPriorConfig.from_json_path(config_path)
# Load pre-trained model from DPRIOR_PATH
if RESUME:
diffusion_prior, loaded_obj = load_diffusion_model(DPRIOR_PATH, device)
tracker.init(entity = wandb_entity, project = wandb_project, config = config)
# diffusion prior trainer
trainer = DiffusionPriorTrainer(
diffusion_prior = diffusion_prior,
lr = learning_rate,
wd = weight_decay,
max_grad_norm = max_grad_norm,
amp = amp,
).to(device)
# load optimizer and scaler
if RESUME:
trainer.optimizer.load_state_dict(loaded_obj['optimizer'])
trainer.scaler.load_state_dict(loaded_obj['scaler'])
# Create save_path if it doesn't exist
Path(save_path).mkdir(exist_ok = True, parents = True)
# Utilize wrapper to abstract away loader logic
print_ribbon("Downloading Embeddings")
reader_args = dict(text_conditioned=dp_condition_on_text_encodings, img_url=image_embed_url)
if dp_condition_on_text_encodings:
reader_args = dict(**reader_args, meta_url=meta_url)
img_reader = get_reader(**reader_args)
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=dp_condition_on_text_encodings,
batch_size=batch_size,
num_data_points=num_data_points,
train_split=train_percent,
eval_split=val_percent,
image_reader=img_reader
)
else:
reader_args = dict(**reader_args, txt_url=text_embed_url)
img_reader, txt_reader = get_reader(**reader_args)
train_loader, eval_loader, test_loader = make_splits(
text_conditioned=dp_condition_on_text_encodings,
batch_size=batch_size,
num_data_points=num_data_points,
train_split=train_percent,
eval_split=val_percent,
image_reader=img_reader,
text_reader=txt_reader
)
### Training code ###
step = 1
timer = Timer()
epochs = num_epochs
for _ in range(epochs):
for image, text in tqdm(train_loader):
diffusion_prior.train()
image = image.to(device)
text = text.to(device)
input_args = dict(image_embed=image)
if dp_condition_on_text_encodings:
input_args = dict(**input_args, text = text)
else:
input_args = dict(**input_args, text_embed=text)
loss = trainer(**input_args)
# Samples per second
samples_per_sec = batch_size * step / timer.elapsed()
# Save checkpoint every save_interval minutes
if(int(timer.elapsed()) >= 60 * save_interval):
timer.reset()
save_diffusion_model(
save_path,
diffusion_prior,
trainer.optimizer,
trainer.scaler,
config,
image_embed_dim)
# Log to wandb
tracker.log({"Training loss": loss,
"Steps": step,
"Samples per second": samples_per_sec})
# Log cosineSim(text_embed,predicted_image_embed) - cosineSim(text_embed,image_embed)
# Use NUM_TEST_EMBEDDINGS samples from the test set each time
# Get embeddings from the most recently saved model
if(step % REPORT_METRICS_EVERY) == 0:
report_cosine_sims(diffusion_prior, eval_loader, dp_condition_on_text_encodings, device=device)
### Evaluate model(validation run) ###
eval_model(diffusion_prior, eval_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Validation", device=device)
step += 1
trainer.update()
### Test run ###
eval_model(diffusion_prior, test_loader, dp_condition_on_text_encodings, dp_loss_type, phase="Test")
# send config to get processed
initialize_training(config, accelerator)
if __name__ == "__main__":
train()
main()