mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 12:04:24 +01:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a851168633 | ||
|
|
1ffeecd0ca | ||
|
|
3df899f7a4 | ||
|
|
09534119a1 | ||
|
|
6f8b90d4d7 | ||
|
|
b588286288 |
@@ -1,3 +1,4 @@
|
||||
from dalle2_pytorch.version import __version__
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
|
||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from torch.optim import AdamW, Adam
|
||||
|
||||
def separate_weight_decayable_params(params):
|
||||
no_wd_params = set([param for param in params if param.ndim < 2])
|
||||
wd_params = set(params) - no_wd_params
|
||||
wd_params, no_wd_params = [], []
|
||||
for param in params:
|
||||
param_list = no_wd_params if param.ndim < 2 else wd_params
|
||||
param_list.append(param)
|
||||
return wd_params, no_wd_params
|
||||
|
||||
def get_optimizer(
|
||||
@@ -25,8 +27,8 @@ def get_optimizer(
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
{'params': wd_params},
|
||||
{'params': no_wd_params, 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
# to give users a quick easy start to training DALL-E without doing BPE
|
||||
|
||||
import torch
|
||||
import youtokentome as yttm
|
||||
|
||||
import html
|
||||
import os
|
||||
@@ -11,6 +10,8 @@ import regex as re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# OpenAI simple tokenizer
|
||||
|
||||
@lru_cache()
|
||||
@@ -156,7 +157,9 @@ class YttmTokenizer:
|
||||
bpe_path = Path(bpe_path)
|
||||
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
|
||||
|
||||
tokenizer = yttm.BPE(model = str(bpe_path))
|
||||
self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`')
|
||||
|
||||
tokenizer = self.yttm.BPE(model = str(bpe_path))
|
||||
self.tokenizer = tokenizer
|
||||
self.vocab_size = tokenizer.vocab_size()
|
||||
|
||||
@@ -167,7 +170,7 @@ class YttmTokenizer:
|
||||
return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0}))
|
||||
|
||||
def encode(self, texts):
|
||||
encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID)
|
||||
encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID)
|
||||
return list(map(torch.tensor, encoded))
|
||||
|
||||
def tokenize(self, texts, context_length = 256, truncate_text = False):
|
||||
|
||||
@@ -6,6 +6,8 @@ from itertools import zip_longest
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
|
||||
# constants
|
||||
|
||||
DEFAULT_DATA_PATH = './.tracker-data'
|
||||
@@ -15,14 +17,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
# load state dict functions
|
||||
|
||||
def load_wandb_state_dict(run_path, file_path, **kwargs):
|
||||
|
||||
@@ -11,6 +11,8 @@ from torch.cuda.amp import autocast, GradScaler
|
||||
|
||||
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||
from dalle2_pytorch.optimizer import get_optimizer
|
||||
from dalle2_pytorch.version import __version__
|
||||
from packaging import version
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -57,8 +59,7 @@ def num_to_groups(num, divisor):
|
||||
return arr
|
||||
|
||||
def get_pkg_version():
|
||||
from pkg_resources import get_distribution
|
||||
return get_distribution('dalle2_pytorch').version
|
||||
return __version__
|
||||
|
||||
# decorators
|
||||
|
||||
@@ -177,7 +178,7 @@ class EMA(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
beta = 0.9999,
|
||||
beta = 0.99,
|
||||
update_after_step = 1000,
|
||||
update_every = 10,
|
||||
):
|
||||
@@ -299,7 +300,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.diffusion_prior.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
@@ -315,8 +316,8 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
|
||||
|
||||
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
@@ -463,7 +464,7 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
save_obj = dict(
|
||||
model = self.decoder.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
@@ -486,7 +487,7 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
|
||||
|
||||
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
|
||||
@@ -17,3 +17,13 @@ class Timer:
|
||||
def print_ribbon(s, symbol = '=', repeat = 40):
|
||||
flank = symbol * repeat
|
||||
return f'{flank} {s} {flank}'
|
||||
|
||||
# import helpers
|
||||
|
||||
def import_or_print_error(pkg_name, err_str = None):
|
||||
try:
|
||||
return importlib.import_module(pkg_name)
|
||||
except ModuleNotFoundError as e:
|
||||
if exists(err_str):
|
||||
print(err_str)
|
||||
exit()
|
||||
|
||||
1
dalle2_pytorch/version.py
Normal file
1
dalle2_pytorch/version.py
Normal file
@@ -0,0 +1 @@
|
||||
__version__ = '0.6.6'
|
||||
5
setup.py
5
setup.py
@@ -1,4 +1,5 @@
|
||||
from setuptools import setup, find_packages
|
||||
exec(open('dalle2_pytorch/version.py').read())
|
||||
|
||||
setup(
|
||||
name = 'dalle2-pytorch',
|
||||
@@ -10,7 +11,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.6.1',
|
||||
version = __version__,
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
@@ -31,6 +32,7 @@ setup(
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'packaging',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'resize-right>=0.0.2',
|
||||
@@ -40,7 +42,6 @@ setup(
|
||||
'tqdm',
|
||||
'vector-quantize-pytorch',
|
||||
'x-clip>=0.4.4',
|
||||
'youtokentome',
|
||||
'webdataset>=0.2.5',
|
||||
'fsspec>=2022.1.0',
|
||||
'torchmetrics[image]>=0.8.0'
|
||||
|
||||
Reference in New Issue
Block a user