mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 03:54:35 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3df899f7a4 | ||
|
|
09534119a1 | ||
|
|
6f8b90d4d7 | ||
|
|
b588286288 | ||
|
|
b693e0be03 |
@@ -1,3 +1,4 @@
|
||||
from dalle2_pytorch.version import __version__
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter
|
||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||
|
||||
@@ -1347,7 +1347,7 @@ class Unet(nn.Module):
|
||||
init_dim = None,
|
||||
init_conv_kernel_size = 7,
|
||||
resnet_groups = 8,
|
||||
num_resnet_blocks = 1,
|
||||
num_resnet_blocks = 2,
|
||||
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||
cross_embed_downsample = False,
|
||||
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
from torch.optim import AdamW, Adam
|
||||
|
||||
def separate_weight_decayable_params(params):
|
||||
no_wd_params = set([param for param in params if param.ndim < 2])
|
||||
wd_params = set(params) - no_wd_params
|
||||
wd_params, no_wd_params = [], []
|
||||
for param in params:
|
||||
param_list = no_wd_params if param.ndim < 2 else wd_params
|
||||
param_list.append(param)
|
||||
return wd_params, no_wd_params
|
||||
|
||||
def get_optimizer(
|
||||
@@ -25,8 +27,8 @@ def get_optimizer(
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
{'params': wd_params},
|
||||
{'params': no_wd_params, 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -11,6 +11,8 @@ from torch.cuda.amp import autocast, GradScaler
|
||||
|
||||
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||
from dalle2_pytorch.optimizer import get_optimizer
|
||||
from dalle2_pytorch.version import __version__
|
||||
from packaging import version
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -57,8 +59,7 @@ def num_to_groups(num, divisor):
|
||||
return arr
|
||||
|
||||
def get_pkg_version():
|
||||
from pkg_resources import get_distribution
|
||||
return get_distribution('dalle2_pytorch').version
|
||||
return __version__
|
||||
|
||||
# decorators
|
||||
|
||||
@@ -299,7 +300,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
scaler = self.scaler.state_dict(),
|
||||
optimizer = self.optimizer.state_dict(),
|
||||
model = self.diffusion_prior.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
@@ -315,8 +316,8 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {get_pkg_version()}')
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
|
||||
|
||||
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
||||
@@ -463,7 +464,7 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
save_obj = dict(
|
||||
model = self.decoder.state_dict(),
|
||||
version = get_pkg_version(),
|
||||
version = __version__,
|
||||
step = self.step.item(),
|
||||
**kwargs
|
||||
)
|
||||
@@ -486,7 +487,7 @@ class DecoderTrainer(nn.Module):
|
||||
|
||||
loaded_obj = torch.load(str(path))
|
||||
|
||||
if get_pkg_version() != loaded_obj['version']:
|
||||
if version.parse(__version__) != loaded_obj['version']:
|
||||
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {get_pkg_version()}')
|
||||
|
||||
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
||||
|
||||
1
dalle2_pytorch/version.py
Normal file
1
dalle2_pytorch/version.py
Normal file
@@ -0,0 +1 @@
|
||||
__version__ = '0.6.4'
|
||||
4
setup.py
4
setup.py
@@ -1,4 +1,5 @@
|
||||
from setuptools import setup, find_packages
|
||||
exec(open('dalle2_pytorch/version.py').read())
|
||||
|
||||
setup(
|
||||
name = 'dalle2-pytorch',
|
||||
@@ -10,7 +11,7 @@ setup(
|
||||
'dream = dalle2_pytorch.cli:dream'
|
||||
],
|
||||
},
|
||||
version = '0.6.0',
|
||||
version = __version__,
|
||||
license='MIT',
|
||||
description = 'DALL-E 2',
|
||||
author = 'Phil Wang',
|
||||
@@ -31,6 +32,7 @@ setup(
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'packaging',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'resize-right>=0.0.2',
|
||||
|
||||
Reference in New Issue
Block a user