mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a0e41267f8 |
12
README.md
12
README.md
@@ -12,7 +12,7 @@ This model is SOTA for text-to-image for now.
|
||||
|
||||
Please join <a href="https://discord.gg/xBPBXfcFHd"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a> if you are interested in helping out with the replication with the <a href="https://laion.ai/">LAION</a> community | <a href="https://www.youtube.com/watch?v=AIOE1l1W0Tw">Yannic Interview</a>
|
||||
|
||||
As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lucidrains/imagen-pytorch">here</a>. Jax versions as well as text-to-video project will be shifted towards the Imagen architecture, as it is way simpler.
|
||||
There was enough interest for a <a href="https://github.com/lucidrains/dalle2-jax">Jax version</a>. I will also eventually extend this to <a href="https://github.com/lucidrains/dalle2-video">text to video</a>, once the repository is in a good place.
|
||||
|
||||
## Status
|
||||
|
||||
@@ -26,7 +26,7 @@ As of 5/23/22, it is no longer SOTA. SOTA will be <a href="https://github.com/lu
|
||||
|
||||
## Pre-Trained Models
|
||||
- LAION is training prior models. Checkpoints are available on <a href="https://huggingface.co/zenglishuci/conditioned-prior">🤗huggingface</a> and the training statistics are available on <a href="https://wandb.ai/nousr_laion/conditioned-prior/reports/LAION-DALLE2-PyTorch-Prior--VmlldzoyMDI2OTIx">🐝WANDB</a>.
|
||||
- Decoder - <a href="https://wandb.ai/veldrovive/dalle2_train_decoder/runs/jkrtg0so?workspace=user-veldrovive">In-progress test run</a> 🚧
|
||||
- Decoder 🚧
|
||||
- DALL-E 2 🚧
|
||||
|
||||
## Install
|
||||
@@ -1195,12 +1195,4 @@ This library would not have gotten to this working state without the help of
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{Saharia2022,
|
||||
title = {Imagen: unprecedented photorealism × deep level of language understanding},
|
||||
author = {Chitwan Saharia*, William Chan*, Saurabh Saxena†, Lala Li†, Jay Whang†, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho†, David Fleet†, Mohammad Norouzi*},
|
||||
year = {2022}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -890,7 +890,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
)
|
||||
|
||||
if exists(clip):
|
||||
assert image_channels == clip.image_channels, f'channels of image ({image_channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
assert image_channels == clip.image_channels, f'channels of image ({channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip, **clip_adapter_overrides)
|
||||
@@ -1107,20 +1107,13 @@ class Block(nn.Module):
|
||||
groups = 8
|
||||
):
|
||||
super().__init__()
|
||||
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
|
||||
self.norm = nn.GroupNorm(groups, dim_out)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x, scale_shift = None):
|
||||
x = self.project(x)
|
||||
x = self.norm(x)
|
||||
|
||||
if exists(scale_shift):
|
||||
scale, shift = scale_shift
|
||||
x = x * (scale + 1) + shift
|
||||
|
||||
x = self.act(x)
|
||||
return x
|
||||
self.block = nn.Sequential(
|
||||
nn.Conv2d(dim, dim_out, 3, padding = 1),
|
||||
nn.GroupNorm(groups, dim_out),
|
||||
nn.SiLU()
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(
|
||||
@@ -1139,7 +1132,7 @@ class ResnetBlock(nn.Module):
|
||||
if exists(time_cond_dim):
|
||||
self.time_mlp = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_cond_dim, dim_out * 2)
|
||||
nn.Linear(time_cond_dim, dim_out)
|
||||
)
|
||||
|
||||
self.cross_attn = None
|
||||
@@ -1159,14 +1152,11 @@ class ResnetBlock(nn.Module):
|
||||
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
||||
|
||||
def forward(self, x, cond = None, time_emb = None):
|
||||
h = self.block1(x)
|
||||
|
||||
scale_shift = None
|
||||
if exists(self.time_mlp) and exists(time_emb):
|
||||
time_emb = self.time_mlp(time_emb)
|
||||
time_emb = rearrange(time_emb, 'b c -> b c 1 1')
|
||||
scale_shift = time_emb.chunk(2, dim = 1)
|
||||
|
||||
h = self.block1(x, scale_shift = scale_shift)
|
||||
h = rearrange(time_emb, 'b c -> b c 1 1') + h
|
||||
|
||||
if exists(self.cross_attn):
|
||||
assert exists(cond)
|
||||
@@ -1714,8 +1704,6 @@ class Decoder(BaseGaussianDiffusion):
|
||||
vb_loss_weight = 0.001,
|
||||
unconditional = False,
|
||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||
use_dynamic_thres = False, # from the Imagen paper
|
||||
dynamic_thres_percentile = 0.9
|
||||
):
|
||||
super().__init__(
|
||||
beta_schedule = beta_schedule,
|
||||
@@ -1838,11 +1826,6 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip_denoised = clip_denoised
|
||||
self.clip_x_start = clip_x_start
|
||||
|
||||
# dynamic thresholding settings, if clipping denoised during sampling
|
||||
|
||||
self.use_dynamic_thres = use_dynamic_thres
|
||||
self.dynamic_thres_percentile = dynamic_thres_percentile
|
||||
|
||||
# normalize and unnormalize image functions
|
||||
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
@@ -1885,21 +1868,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
|
||||
|
||||
if clip_denoised:
|
||||
# s is the threshold amount
|
||||
# static thresholding would just be s = 1
|
||||
s = 1.
|
||||
if self.use_dynamic_thres:
|
||||
s = torch.quantile(
|
||||
rearrange(x_recon, 'b ... -> b (...)').abs(),
|
||||
self.dynamic_thres_percentile,
|
||||
dim = -1
|
||||
)
|
||||
|
||||
s.clamp_(min = 1.)
|
||||
s = s.view(-1, *((1,) * (x_recon.ndim - 1)))
|
||||
|
||||
# clip by threshold, depending on whether static or dynamic
|
||||
x_recon = x_recon.clamp(-s, s) / s
|
||||
x_recon.clamp_(-1., 1.)
|
||||
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
|
||||
|
||||
@@ -12,7 +12,6 @@ def get_optimizer(
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
filter_by_requires_grad = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
if filter_by_requires_grad:
|
||||
@@ -22,13 +21,11 @@ def get_optimizer(
|
||||
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||
|
||||
params = set(params)
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
if group_wd_params:
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
param_groups = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -254,7 +254,6 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
eps = 1e-6,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -280,7 +279,6 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
lr = lr,
|
||||
wd = wd,
|
||||
eps = eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@@ -412,7 +410,6 @@ class DecoderTrainer(nn.Module):
|
||||
eps = 1e-8,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -438,7 +435,6 @@ class DecoderTrainer(nn.Module):
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user