mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 22:14:30 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
857b9fbf1e | ||
|
|
8864fd0aa7 |
@@ -1195,4 +1195,12 @@ This library would not have gotten to this working state without the help of
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{Saharia2022,
|
||||
title = {Imagen: unprecedented photorealism × deep level of language understanding},
|
||||
author = {Chitwan Saharia*, William Chan*, Saurabh Saxena†, Lala Li†, Jay Whang†, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho†, David Fleet†, Mohammad Norouzi*},
|
||||
year = {2022}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -1704,6 +1704,8 @@ class Decoder(BaseGaussianDiffusion):
|
||||
vb_loss_weight = 0.001,
|
||||
unconditional = False,
|
||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||
use_dynamic_thres = False, # from the Imagen paper
|
||||
dynamic_thres_percentile = 0.9
|
||||
):
|
||||
super().__init__(
|
||||
beta_schedule = beta_schedule,
|
||||
@@ -1826,6 +1828,11 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip_denoised = clip_denoised
|
||||
self.clip_x_start = clip_x_start
|
||||
|
||||
# dynamic thresholding settings, if clipping denoised during sampling
|
||||
|
||||
self.use_dynamic_thres = use_dynamic_thres
|
||||
self.dynamic_thres_percentile = dynamic_thres_percentile
|
||||
|
||||
# normalize and unnormalize image functions
|
||||
|
||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||
@@ -1868,7 +1875,21 @@ class Decoder(BaseGaussianDiffusion):
|
||||
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
|
||||
|
||||
if clip_denoised:
|
||||
x_recon.clamp_(-1., 1.)
|
||||
# s is the threshold amount
|
||||
# static thresholding would just be s = 1
|
||||
s = 1.
|
||||
if self.use_dynamic_thres:
|
||||
s = torch.quantile(
|
||||
rearrange(x_recon, 'b ... -> b (...)').abs(),
|
||||
self.dynamic_thres_percentile,
|
||||
dim = -1
|
||||
)
|
||||
|
||||
s.clamp_(min = 1.)
|
||||
s = s.view(-1, *((1,) * (x_recon.ndim - 1)))
|
||||
|
||||
# clip by threshold, depending on whether static or dynamic
|
||||
x_recon = x_recon.clamp(-s, s) / s
|
||||
|
||||
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
||||
|
||||
|
||||
@@ -12,6 +12,7 @@ def get_optimizer(
|
||||
betas = (0.9, 0.999),
|
||||
eps = 1e-8,
|
||||
filter_by_requires_grad = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
if filter_by_requires_grad:
|
||||
@@ -21,11 +22,13 @@ def get_optimizer(
|
||||
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||
|
||||
params = set(params)
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
param_groups = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
if group_wd_params:
|
||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||
|
||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
params = [
|
||||
{'params': list(wd_params)},
|
||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||
]
|
||||
|
||||
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||
|
||||
@@ -254,6 +254,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
eps = 1e-6,
|
||||
max_grad_norm = None,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -279,6 +280,7 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
lr = lr,
|
||||
wd = wd,
|
||||
eps = eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@@ -410,6 +412,7 @@ class DecoderTrainer(nn.Module):
|
||||
eps = 1e-8,
|
||||
max_grad_norm = 0.5,
|
||||
amp = False,
|
||||
group_wd_params = True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
@@ -435,6 +438,7 @@ class DecoderTrainer(nn.Module):
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user