Compare commits

...

3 Commits

5 changed files with 64 additions and 18 deletions

View File

@@ -1195,4 +1195,12 @@ This library would not have gotten to this working state without the help of
}
```
```bibtex
@misc{Saharia2022,
title = {Imagen: unprecedented photorealism × deep level of language understanding},
author = {Chitwan Saharia*, William Chan*, Saurabh Saxena†, Lala Li†, Jay Whang†, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho†, David Fleet†, Mohammad Norouzi*},
year = {2022}
}
```
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>

View File

@@ -1107,13 +1107,20 @@ class Block(nn.Module):
groups = 8
):
super().__init__()
self.block = nn.Sequential(
nn.Conv2d(dim, dim_out, 3, padding = 1),
nn.GroupNorm(groups, dim_out),
nn.SiLU()
)
def forward(self, x):
return self.block(x)
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
def forward(self, x, scale_shift = None):
x = self.project(x)
x = self.norm(x)
if exists(scale_shift):
scale, shift = scale_shift
x = x * (scale + 1) + shift
x = self.act(x)
return x
class ResnetBlock(nn.Module):
def __init__(
@@ -1132,7 +1139,7 @@ class ResnetBlock(nn.Module):
if exists(time_cond_dim):
self.time_mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(time_cond_dim, dim_out)
nn.Linear(time_cond_dim, dim_out * 2)
)
self.cross_attn = None
@@ -1152,11 +1159,14 @@ class ResnetBlock(nn.Module):
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, cond = None, time_emb = None):
h = self.block1(x)
scale_shift = None
if exists(self.time_mlp) and exists(time_emb):
time_emb = self.time_mlp(time_emb)
h = rearrange(time_emb, 'b c -> b c 1 1') + h
time_emb = rearrange(time_emb, 'b c -> b c 1 1')
scale_shift = time_emb.chunk(2, dim = 1)
h = self.block1(x, scale_shift = scale_shift)
if exists(self.cross_attn):
assert exists(cond)
@@ -1704,6 +1714,8 @@ class Decoder(BaseGaussianDiffusion):
vb_loss_weight = 0.001,
unconditional = False,
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
use_dynamic_thres = False, # from the Imagen paper
dynamic_thres_percentile = 0.9
):
super().__init__(
beta_schedule = beta_schedule,
@@ -1826,6 +1838,11 @@ class Decoder(BaseGaussianDiffusion):
self.clip_denoised = clip_denoised
self.clip_x_start = clip_x_start
# dynamic thresholding settings, if clipping denoised during sampling
self.use_dynamic_thres = use_dynamic_thres
self.dynamic_thres_percentile = dynamic_thres_percentile
# normalize and unnormalize image functions
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
@@ -1868,7 +1885,21 @@ class Decoder(BaseGaussianDiffusion):
x_recon = self.predict_start_from_noise(x, t = t, noise = pred)
if clip_denoised:
x_recon.clamp_(-1., 1.)
# s is the threshold amount
# static thresholding would just be s = 1
s = 1.
if self.use_dynamic_thres:
s = torch.quantile(
rearrange(x_recon, 'b ... -> b (...)').abs(),
self.dynamic_thres_percentile,
dim = -1
)
s.clamp_(min = 1.)
s = s.view(-1, *((1,) * (x_recon.ndim - 1)))
# clip by threshold, depending on whether static or dynamic
x_recon = x_recon.clamp(-s, s) / s
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)

View File

@@ -12,6 +12,7 @@ def get_optimizer(
betas = (0.9, 0.999),
eps = 1e-8,
filter_by_requires_grad = False,
group_wd_params = True,
**kwargs
):
if filter_by_requires_grad:
@@ -21,11 +22,13 @@ def get_optimizer(
return Adam(params, lr = lr, betas = betas, eps = eps)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
param_groups = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
if group_wd_params:
wd_params, no_wd_params = separate_weight_decayable_params(params)
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
params = [
{'params': list(wd_params)},
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)

View File

@@ -254,6 +254,7 @@ class DiffusionPriorTrainer(nn.Module):
eps = 1e-6,
max_grad_norm = None,
amp = False,
group_wd_params = True,
**kwargs
):
super().__init__()
@@ -279,6 +280,7 @@ class DiffusionPriorTrainer(nn.Module):
lr = lr,
wd = wd,
eps = eps,
group_wd_params = group_wd_params,
**kwargs
)
@@ -410,6 +412,7 @@ class DecoderTrainer(nn.Module):
eps = 1e-8,
max_grad_norm = 0.5,
amp = False,
group_wd_params = True,
**kwargs
):
super().__init__()
@@ -435,6 +438,7 @@ class DecoderTrainer(nn.Module):
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
group_wd_params = group_wd_params,
**kwargs
)

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream'
],
},
version = '0.4.14',
version = '0.5.2',
license='MIT',
description = 'DALL-E 2',
author = 'Phil Wang',