mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 03:54:35 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a58a370d75 | ||
|
|
1662bbf226 | ||
|
|
5be1f57448 | ||
|
|
c52ce58e10 |
2
.github/FUNDING.yml
vendored
2
.github/FUNDING.yml
vendored
@@ -1 +1 @@
|
||||
github: [lucidrains]
|
||||
github: [nousr, Veldrovive, lucidrains]
|
||||
|
||||
@@ -1926,7 +1926,7 @@ class Unet(nn.Module):
|
||||
hiddens.append(x)
|
||||
|
||||
x = attn(x)
|
||||
hiddens.append(x)
|
||||
hiddens.append(x.contiguous())
|
||||
|
||||
if exists(post_downsample):
|
||||
x = post_downsample(x)
|
||||
@@ -2172,6 +2172,7 @@ class Decoder(nn.Module):
|
||||
# random crop sizes (for super-resoluting unets at the end of cascade?)
|
||||
|
||||
self.random_crop_sizes = cast_tuple(random_crop_sizes, len(image_sizes))
|
||||
assert not exists(self.random_crop_sizes[0]), 'you would not need to randomly crop the image for the base unet'
|
||||
|
||||
# predict x0 config
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.24.0'
|
||||
__version__ = '0.24.2'
|
||||
|
||||
Reference in New Issue
Block a user