mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a34f60962a | ||
|
|
0b40cbaa54 | ||
|
|
f141144a6d | ||
|
|
f988207718 |
@@ -146,7 +146,7 @@ def resize_image_to(
|
||||
scale_factors = target_image_size / orig_image_size
|
||||
out = resize(image, scale_factors = scale_factors, **kwargs)
|
||||
else:
|
||||
out = F.interpolate(image, target_image_size, mode = 'nearest', align_corners = False)
|
||||
out = F.interpolate(image, target_image_size, mode = 'nearest')
|
||||
|
||||
if exists(clamp_range):
|
||||
out = out.clamp(*clamp_range)
|
||||
@@ -278,6 +278,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
import clip
|
||||
openai_clip, preprocess = clip.load(name)
|
||||
super().__init__(openai_clip)
|
||||
self.eos_id = 49407 # for handling 0 being also '!'
|
||||
|
||||
text_attention_final = self.find_layer('ln_final')
|
||||
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||
@@ -316,7 +317,10 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
@torch.no_grad()
|
||||
def embed_text(self, text):
|
||||
text = text[..., :self.max_text_len]
|
||||
text_mask = text != 0
|
||||
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
@@ -900,7 +904,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
null_text_embeds = self.null_text_embed.to(text_encodings.dtype)
|
||||
|
||||
text_encodings = torch.where(
|
||||
rearrange(mask, 'b n -> b n 1'),
|
||||
rearrange(mask, 'b n -> b n 1').clone(),
|
||||
text_encodings,
|
||||
null_text_embeds
|
||||
)
|
||||
@@ -1727,7 +1731,10 @@ class Unet(nn.Module):
|
||||
]))
|
||||
|
||||
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
|
||||
self.to_out = nn.Conv2d(dim, self.channels_out, kernel_size = final_conv_kernel_size, padding = final_conv_kernel_size // 2)
|
||||
|
||||
out_dim_in = dim + (channels if lowres_cond else 0)
|
||||
|
||||
self.to_out = nn.Conv2d(out_dim_in, self.channels_out, kernel_size = final_conv_kernel_size, padding = final_conv_kernel_size // 2)
|
||||
|
||||
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
|
||||
|
||||
@@ -1947,13 +1954,16 @@ class Unet(nn.Module):
|
||||
x = torch.cat((x, r), dim = 1)
|
||||
|
||||
x = self.final_resnet_block(x, t)
|
||||
|
||||
if exists(lowres_cond_img):
|
||||
x = torch.cat((x, lowres_cond_img), dim = 1)
|
||||
|
||||
return self.to_out(x)
|
||||
|
||||
class LowresConditioner(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
downsample_first = True,
|
||||
downsample_mode_nearest = False,
|
||||
blur_prob = 0.5,
|
||||
blur_sigma = 0.6,
|
||||
blur_kernel_size = 3,
|
||||
@@ -1961,8 +1971,6 @@ class LowresConditioner(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
self.downsample_first = downsample_first
|
||||
self.downsample_mode_nearest = downsample_mode_nearest
|
||||
|
||||
self.input_image_range = input_image_range
|
||||
|
||||
self.blur_prob = blur_prob
|
||||
@@ -1979,7 +1987,7 @@ class LowresConditioner(nn.Module):
|
||||
blur_kernel_size = None
|
||||
):
|
||||
if self.downsample_first and exists(downsample_image_size):
|
||||
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = self.downsample_mode_nearest)
|
||||
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = True)
|
||||
|
||||
# blur is only applied 50% of the time
|
||||
# section 3.1 in https://arxiv.org/abs/2106.15282
|
||||
@@ -2006,7 +2014,7 @@ class LowresConditioner(nn.Module):
|
||||
|
||||
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
||||
|
||||
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
|
||||
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range, nearest = True)
|
||||
return cond_fmap
|
||||
|
||||
class Decoder(nn.Module):
|
||||
@@ -2029,7 +2037,6 @@ class Decoder(nn.Module):
|
||||
image_sizes = None, # for cascading ddpm, image size at each stage
|
||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||
lowres_downsample_mode_nearest = False, # cascading ddpm - whether to use nearest mode downsampling for lower resolution
|
||||
blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time
|
||||
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||
@@ -2179,11 +2186,8 @@ class Decoder(nn.Module):
|
||||
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
||||
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
||||
|
||||
self.lowres_downsample_mode_nearest = lowres_downsample_mode_nearest
|
||||
|
||||
self.to_lowres_cond = LowresConditioner(
|
||||
downsample_first = lowres_downsample_first,
|
||||
downsample_mode_nearest = lowres_downsample_mode_nearest,
|
||||
blur_prob = blur_prob,
|
||||
blur_sigma = blur_sigma,
|
||||
blur_kernel_size = blur_kernel_size,
|
||||
@@ -2494,7 +2498,10 @@ class Decoder(nn.Module):
|
||||
img = None
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps)):
|
||||
num_unets = len(self.unets)
|
||||
cond_scale = cast_tuple(cond_scale, num_unets)
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps, cond_scale)):
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||
|
||||
@@ -2503,7 +2510,7 @@ class Decoder(nn.Module):
|
||||
shape = (batch_size, channel, image_size, image_size)
|
||||
|
||||
if unet.lowres_cond:
|
||||
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = self.lowres_downsample_mode_nearest)
|
||||
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = True)
|
||||
|
||||
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
||||
image_size = vae.get_encoded_fmap_size(image_size)
|
||||
@@ -2516,7 +2523,7 @@ class Decoder(nn.Module):
|
||||
shape,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
cond_scale = unet_cond_scale,
|
||||
predict_x_start = predict_x_start,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = not is_latent_diffusion,
|
||||
@@ -2573,7 +2580,7 @@ class Decoder(nn.Module):
|
||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||
|
||||
lowres_cond_img = self.to_lowres_cond(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if unet_number > 1 else None
|
||||
image = resize_image_to(image, target_image_size)
|
||||
image = resize_image_to(image, target_image_size, nearest = True)
|
||||
|
||||
if exists(random_crop_size):
|
||||
aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.)
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.23.7'
|
||||
__version__ = '0.24.0'
|
||||
|
||||
Reference in New Issue
Block a user