mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 12:04:24 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f141144a6d | ||
|
|
f988207718 | ||
|
|
b2073219f0 | ||
|
|
cc0f7a935c |
@@ -278,6 +278,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
import clip
|
||||
openai_clip, preprocess = clip.load(name)
|
||||
super().__init__(openai_clip)
|
||||
self.eos_id = 49407 # for handling 0 being also '!'
|
||||
|
||||
text_attention_final = self.find_layer('ln_final')
|
||||
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||
@@ -316,7 +317,10 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
||||
@torch.no_grad()
|
||||
def embed_text(self, text):
|
||||
text = text[..., :self.max_text_len]
|
||||
text_mask = text != 0
|
||||
|
||||
is_eos_id = (text == self.eos_id)
|
||||
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||
assert not self.cleared
|
||||
|
||||
text_embed = self.clip.encode_text(text)
|
||||
@@ -900,7 +904,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
null_text_embeds = self.null_text_embed.to(text_encodings.dtype)
|
||||
|
||||
text_encodings = torch.where(
|
||||
rearrange(mask, 'b n -> b n 1'),
|
||||
rearrange(mask, 'b n -> b n 1').clone(),
|
||||
text_encodings,
|
||||
null_text_embeds
|
||||
)
|
||||
@@ -1251,6 +1255,14 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
# decoder
|
||||
|
||||
def NearestUpsample(dim, dim_out = None):
|
||||
dim_out = default(dim_out, dim)
|
||||
|
||||
return nn.Sequential(
|
||||
nn.Upsample(scale_factor = 2, mode = 'nearest'),
|
||||
nn.Conv2d(dim, dim_out, 3, padding = 1)
|
||||
)
|
||||
|
||||
class PixelShuffleUpsample(nn.Module):
|
||||
"""
|
||||
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
|
||||
@@ -1657,7 +1669,7 @@ class Unet(nn.Module):
|
||||
|
||||
# upsample klass
|
||||
|
||||
upsample_klass = ConvTransposeUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
||||
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
|
||||
|
||||
# give memory efficient unet an initial resnet block
|
||||
|
||||
@@ -2486,7 +2498,10 @@ class Decoder(nn.Module):
|
||||
img = None
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps)):
|
||||
num_unets = len(self.unets)
|
||||
cond_scale = cast_tuple(cond_scale, num_unets)
|
||||
|
||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps, cond_scale)):
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||
|
||||
@@ -2508,7 +2523,7 @@ class Decoder(nn.Module):
|
||||
shape,
|
||||
image_embed = image_embed,
|
||||
text_encodings = text_encodings,
|
||||
cond_scale = cond_scale,
|
||||
cond_scale = unet_cond_scale,
|
||||
predict_x_start = predict_x_start,
|
||||
learned_variance = learned_variance,
|
||||
clip_denoised = not is_latent_diffusion,
|
||||
|
||||
@@ -673,8 +673,14 @@ class DecoderTrainer(nn.Module):
|
||||
def sample(self, *args, **kwargs):
|
||||
distributed = self.accelerator.num_processes > 1
|
||||
base_decoder = self.accelerator.unwrap_model(self.decoder)
|
||||
|
||||
was_training = base_decoder.training
|
||||
base_decoder.eval()
|
||||
|
||||
if kwargs.pop('use_non_ema', False) or not self.use_ema:
|
||||
return base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
out = base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
base_decoder.train(was_training)
|
||||
return out
|
||||
|
||||
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
|
||||
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
@@ -687,6 +693,7 @@ class DecoderTrainer(nn.Module):
|
||||
for ema in self.ema_unets:
|
||||
ema.restore_ema_model_device()
|
||||
|
||||
base_decoder.train(was_training)
|
||||
return output
|
||||
|
||||
@torch.no_grad()
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.23.5'
|
||||
__version__ = '0.23.9'
|
||||
|
||||
Reference in New Issue
Block a user