Compare commits

..

5 Commits

3 changed files with 45 additions and 11 deletions

View File

@@ -278,6 +278,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
import clip
openai_clip, preprocess = clip.load(name)
super().__init__(openai_clip)
self.eos_id = 49407 # for handling 0 being also '!'
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
@@ -316,7 +317,10 @@ class OpenAIClipAdapter(BaseClipAdapter):
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
text_mask = text != 0
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
assert not self.cleared
text_embed = self.clip.encode_text(text)
@@ -900,7 +904,7 @@ class DiffusionPriorNetwork(nn.Module):
null_text_embeds = self.null_text_embed.to(text_encodings.dtype)
text_encodings = torch.where(
rearrange(mask, 'b n -> b n 1'),
rearrange(mask, 'b n -> b n 1').clone(),
text_encodings,
null_text_embeds
)
@@ -1251,6 +1255,14 @@ class DiffusionPrior(nn.Module):
# decoder
def NearestUpsample(dim, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Sequential(
nn.Upsample(scale_factor = 2, mode = 'nearest'),
nn.Conv2d(dim, dim_out, 3, padding = 1)
)
class PixelShuffleUpsample(nn.Module):
"""
code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts
@@ -1657,7 +1669,7 @@ class Unet(nn.Module):
# upsample klass
upsample_klass = ConvTransposeUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample
# give memory efficient unet an initial resnet block
@@ -1946,6 +1958,7 @@ class LowresConditioner(nn.Module):
self,
downsample_first = True,
downsample_mode_nearest = False,
blur_prob = 0.5,
blur_sigma = 0.6,
blur_kernel_size = 3,
input_image_range = None
@@ -1956,6 +1969,7 @@ class LowresConditioner(nn.Module):
self.input_image_range = input_image_range
self.blur_prob = blur_prob
self.blur_sigma = blur_sigma
self.blur_kernel_size = blur_kernel_size
@@ -1968,20 +1982,27 @@ class LowresConditioner(nn.Module):
blur_sigma = None,
blur_kernel_size = None
):
if self.training and self.downsample_first and exists(downsample_image_size):
if self.downsample_first and exists(downsample_image_size):
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = self.downsample_mode_nearest)
if self.training:
# blur is only applied 50% of the time
# section 3.1 in https://arxiv.org/abs/2106.15282
if random.random() < self.blur_prob:
# when training, blur the low resolution conditional image
blur_sigma = default(blur_sigma, self.blur_sigma)
blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size)
# allow for drawing a random sigma between lo and hi float values
if isinstance(blur_sigma, tuple):
blur_sigma = tuple(map(float, blur_sigma))
blur_sigma = random.uniform(*blur_sigma)
# allow for drawing a random kernel size between lo and hi int values
if isinstance(blur_kernel_size, tuple):
blur_kernel_size = tuple(map(int, blur_kernel_size))
kernel_size_lo, kernel_size_hi = blur_kernel_size
@@ -1990,7 +2011,6 @@ class LowresConditioner(nn.Module):
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
return cond_fmap
class Decoder(nn.Module):
@@ -2014,6 +2034,7 @@ class Decoder(nn.Module):
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
lowres_downsample_mode_nearest = False, # cascading ddpm - whether to use nearest mode downsampling for lower resolution
blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time
blur_sigma = 0.6, # cascading ddpm - blur sigma
blur_kernel_size = 3, # cascading ddpm - blur kernel size
clip_denoised = True,
@@ -2162,9 +2183,12 @@ class Decoder(nn.Module):
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
self.lowres_downsample_mode_nearest = lowres_downsample_mode_nearest
self.to_lowres_cond = LowresConditioner(
downsample_first = lowres_downsample_first,
downsample_mode_nearest = lowres_downsample_mode_nearest,
blur_prob = blur_prob,
blur_sigma = blur_sigma,
blur_kernel_size = blur_kernel_size,
input_image_range = self.input_image_range
@@ -2474,7 +2498,10 @@ class Decoder(nn.Module):
img = None
is_cuda = next(self.parameters()).is_cuda
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps in tqdm(zip(range(1, len(self.unets) + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps)):
num_unets = len(self.unets)
cond_scale = cast_tuple(cond_scale, num_unets)
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps, cond_scale)):
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
@@ -2483,7 +2510,7 @@ class Decoder(nn.Module):
shape = (batch_size, channel, image_size, image_size)
if unet.lowres_cond:
lowres_cond_img = self.to_lowres_cond(img, target_image_size = image_size)
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = self.lowres_downsample_mode_nearest)
is_latent_diffusion = isinstance(vae, VQGanVAE)
image_size = vae.get_encoded_fmap_size(image_size)
@@ -2496,7 +2523,7 @@ class Decoder(nn.Module):
shape,
image_embed = image_embed,
text_encodings = text_encodings,
cond_scale = cond_scale,
cond_scale = unet_cond_scale,
predict_x_start = predict_x_start,
learned_variance = learned_variance,
clip_denoised = not is_latent_diffusion,

View File

@@ -673,8 +673,14 @@ class DecoderTrainer(nn.Module):
def sample(self, *args, **kwargs):
distributed = self.accelerator.num_processes > 1
base_decoder = self.accelerator.unwrap_model(self.decoder)
was_training = base_decoder.training
base_decoder.eval()
if kwargs.pop('use_non_ema', False) or not self.use_ema:
return base_decoder.sample(*args, **kwargs, distributed = distributed)
out = base_decoder.sample(*args, **kwargs, distributed = distributed)
base_decoder.train(was_training)
return out
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
@@ -687,6 +693,7 @@ class DecoderTrainer(nn.Module):
for ema in self.ema_unets:
ema.restore_ema_model_device()
base_decoder.train(was_training)
return output
@torch.no_grad()

View File

@@ -1 +1 @@
__version__ = '0.23.4'
__version__ = '0.23.9'