Compare commits

...

3 Commits

Author SHA1 Message Date
Phil Wang
79e2a3bc77 only use the stable layernorm for final output norm in transformer 2022-07-13 07:56:30 -07:00
Aidan Dempster
544cdd0b29 Reverted to using basic dataloaders (#205)
Accelerate removes the ability to collate strings. Likely since it
cannot gather strings.
2022-07-12 18:22:27 -07:00
Phil Wang
349aaca56f add yet another transformer stability measure 2022-07-12 17:49:16 -07:00
4 changed files with 22 additions and 9 deletions

View File

@@ -527,25 +527,31 @@ class NoiseScheduler(nn.Module):
# diffusion prior
class LayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
def __init__(self, dim, eps = 1e-5, stable = False):
super().__init__()
self.eps = eps
self.stable = stable
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
x = x / x.amax(dim = -1, keepdim = True).detach()
if self.stable:
x = x / x.amax(dim = -1, keepdim = True).detach()
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = -1, keepdim = True)
return (x - mean) * (var + self.eps).rsqrt() * self.g
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
def __init__(self, dim, eps = 1e-5, stable = False):
super().__init__()
self.eps = eps
self.stable = stable
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
def forward(self, x):
x = x / x.amax(dim = 1, keepdim = True).detach()
if self.stable:
x = x / x.amax(dim = 1, keepdim = True).detach()
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) * (var + self.eps).rsqrt() * self.g
@@ -669,7 +675,7 @@ class Attention(nn.Module):
dropout = 0.,
causal = False,
rotary_emb = None,
pb_relax_alpha = 32 ** 2
pb_relax_alpha = 128
):
super().__init__()
self.pb_relax_alpha = pb_relax_alpha
@@ -760,6 +766,7 @@ class CausalTransformer(nn.Module):
dim_head = 64,
heads = 8,
ff_mult = 4,
norm_in = False,
norm_out = True,
attn_dropout = 0.,
ff_dropout = 0.,
@@ -768,6 +775,8 @@ class CausalTransformer(nn.Module):
rotary_emb = True
):
super().__init__()
self.init_norm = LayerNorm(dim) if norm_in else nn.Identity() # from latest BLOOM model and Yandex's YaLM
self.rel_pos_bias = RelPosBias(heads = heads)
rotary_emb = RotaryEmbedding(dim = min(32, dim_head)) if rotary_emb else None
@@ -779,12 +788,14 @@ class CausalTransformer(nn.Module):
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
]))
self.norm = LayerNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
self.norm = LayerNorm(dim, stable = True) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
self.project_out = nn.Linear(dim, dim, bias = False) if final_proj else nn.Identity()
def forward(self, x):
n, device = x.shape[1], x.device
x = self.init_norm(x)
attn_bias = self.rel_pos_bias(n, n + 1, device = device)
for attn, ff in self.layers:

View File

@@ -137,6 +137,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
dim_head: int = 64
heads: int = 8
ff_mult: int = 4
norm_in: bool = False
norm_out: bool = True
attn_dropout: float = 0.
ff_dropout: float = 0.

View File

@@ -1 +1 @@
__version__ = '0.23.1'
__version__ = '0.23.3'

View File

@@ -323,7 +323,7 @@ def train(
last_snapshot = sample
if next_task == 'train':
for i, (img, emb, txt) in enumerate(trainer.train_loader):
for i, (img, emb, txt) in enumerate(dataloaders["train"]):
# We want to count the total number of samples across all processes
sample_length_tensor[0] = len(img)
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
@@ -358,6 +358,7 @@ def train(
else:
# Then we need to pass the text instead
tokenized_texts = tokenize(txt, truncate=True)
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
forward_params['text'] = tokenized_texts
loss = trainer.forward(img, **forward_params, unet_number=unet)
trainer.update(unet_number=unet)
@@ -416,7 +417,7 @@ def train(
timer = Timer()
accelerator.wait_for_everyone()
i = 0
for i, (img, emb, txt) in enumerate(trainer.val_loader): # Use the accelerate prepared loader
for i, (img, emb, txt) in enumerate(dataloaders['val']): # Use the accelerate prepared loader
val_sample_length_tensor[0] = len(img)
all_samples = accelerator.gather(val_sample_length_tensor)
total_samples = all_samples.sum().item()