mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
39 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
06c65b60d2 | ||
|
|
4145474bab | ||
|
|
4b912a38c6 | ||
|
|
f97e55ec6b | ||
|
|
291377bb9c | ||
|
|
7f120a8b56 | ||
|
|
8c003ab1e1 | ||
|
|
723bf0abba | ||
|
|
d88c7ba56c | ||
|
|
3676a8ce78 | ||
|
|
da8e99ada0 | ||
|
|
6afb886cf4 | ||
|
|
c7fe4f2f44 | ||
|
|
a2ee3fa3cc | ||
|
|
a58a370d75 | ||
|
|
1662bbf226 | ||
|
|
5be1f57448 | ||
|
|
c52ce58e10 | ||
|
|
a34f60962a | ||
|
|
0b40cbaa54 | ||
|
|
f141144a6d | ||
|
|
f988207718 | ||
|
|
b2073219f0 | ||
|
|
cc0f7a935c | ||
|
|
95a512cb65 | ||
|
|
972ee973bc | ||
|
|
79e2a3bc77 | ||
|
|
544cdd0b29 | ||
|
|
349aaca56f | ||
|
|
3ee3c56d2a | ||
|
|
cd26c6b17d | ||
|
|
775abc4df6 | ||
|
|
11b1d533a0 | ||
|
|
e76e89f9eb | ||
|
|
bb3ff0ac67 | ||
|
|
1ec4dbe64f | ||
|
|
e0835acca9 | ||
|
|
e055793e5d | ||
|
|
1d9ef99288 |
2
.github/FUNDING.yml
vendored
2
.github/FUNDING.yml
vendored
@@ -1 +1 @@
|
||||
github: [lucidrains]
|
||||
github: [nousr, Veldrovive, lucidrains]
|
||||
|
||||
112
README.md
112
README.md
@@ -45,6 +45,7 @@ This library would not have gotten to this working state without the help of
|
||||
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
|
||||
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
|
||||
- <a href="https://github.com/marunine">Marunine</a> for identifying issues with resizing of the low resolution conditioner, when training the upsampler, in addition to various other bug fixes
|
||||
- <a href="https://github.com/malumadev">MalumaDev</a> for proposing the use of pixel shuffle upsampler for fixing checkboard artifacts
|
||||
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
||||
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
|
||||
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
|
||||
@@ -420,7 +421,7 @@ For the layperson, no worries, training will all be automated into a CLI tool, a
|
||||
|
||||
## Training on Preprocessed CLIP Embeddings
|
||||
|
||||
It is likely, when scaling up, that you would first preprocess your images and text into corresponding embeddings before training the prior network. You can do so easily by simply passing in `image_embed`, `text_embed`, and optionally `text_encodings` and `text_mask`
|
||||
It is likely, when scaling up, that you would first preprocess your images and text into corresponding embeddings before training the prior network. You can do so easily by simply passing in `image_embed`, `text_embed`, and optionally `text_encodings`
|
||||
|
||||
Working example below
|
||||
|
||||
@@ -627,6 +628,82 @@ images = dalle2(
|
||||
|
||||
Now you'll just have to worry about training the Prior and the Decoder!
|
||||
|
||||
## Inpainting
|
||||
|
||||
Inpainting is also built into the `Decoder`. You simply have to pass in the `inpaint_image` and `inpaint_mask` (boolean tensor where `True` indicates which regions of the inpaint image to keep)
|
||||
|
||||
This repository uses the formulation put forth by <a href="https://arxiv.org/abs/2201.09865">Lugmayr et al. in Repaint</a>
|
||||
|
||||
```python
|
||||
import torch
|
||||
from dalle2_pytorch import Unet, Decoder, CLIP
|
||||
|
||||
# trained clip from step 1
|
||||
|
||||
clip = CLIP(
|
||||
dim_text = 512,
|
||||
dim_image = 512,
|
||||
dim_latent = 512,
|
||||
num_text_tokens = 49408,
|
||||
text_enc_depth = 6,
|
||||
text_seq_len = 256,
|
||||
text_heads = 8,
|
||||
visual_enc_depth = 6,
|
||||
visual_image_size = 256,
|
||||
visual_patch_size = 32,
|
||||
visual_heads = 8
|
||||
).cuda()
|
||||
|
||||
# 2 unets for the decoder (a la cascading DDPM)
|
||||
|
||||
unet = Unet(
|
||||
dim = 16,
|
||||
image_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults = (1, 1, 1, 1)
|
||||
).cuda()
|
||||
|
||||
|
||||
# decoder, which contains the unet(s) and clip
|
||||
|
||||
decoder = Decoder(
|
||||
clip = clip,
|
||||
unet = (unet,), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
|
||||
image_sizes = (256,), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
|
||||
timesteps = 1000,
|
||||
image_cond_drop_prob = 0.1,
|
||||
text_cond_drop_prob = 0.5
|
||||
).cuda()
|
||||
|
||||
# mock images (get a lot of this)
|
||||
|
||||
images = torch.randn(4, 3, 256, 256).cuda()
|
||||
|
||||
# feed images into decoder, specifying which unet you want to train
|
||||
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
|
||||
|
||||
loss = decoder(images, unet_number = 1)
|
||||
loss.backward()
|
||||
|
||||
# do the above for many steps for both unets
|
||||
|
||||
mock_image_embed = torch.randn(1, 512).cuda()
|
||||
|
||||
# then to do inpainting
|
||||
|
||||
inpaint_image = torch.randn(1, 3, 256, 256).cuda() # (batch, channels, height, width)
|
||||
inpaint_mask = torch.ones(1, 256, 256).bool().cuda() # (batch, height, width)
|
||||
|
||||
inpainted_images = decoder.sample(
|
||||
image_embed = mock_image_embed,
|
||||
inpaint_image = inpaint_image, # just pass in the inpaint image
|
||||
inpaint_mask = inpaint_mask # and the mask
|
||||
)
|
||||
|
||||
inpainted_images.shape # (1, 3, 256, 256)
|
||||
```
|
||||
|
||||
## Experimental
|
||||
|
||||
### DALL-E2 with Latent Diffusion
|
||||
@@ -990,26 +1067,12 @@ dataset = ImageEmbeddingDataset(
|
||||
)
|
||||
```
|
||||
|
||||
### Scripts (wip)
|
||||
### Scripts
|
||||
|
||||
#### `train_diffusion_prior.py`
|
||||
|
||||
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
|
||||
|
||||
## CLI (wip)
|
||||
|
||||
```bash
|
||||
$ dream 'sharing a sunset at the summit of mount everest with my dog'
|
||||
```
|
||||
|
||||
Once built, images will be saved to the same directory the command is invoked
|
||||
|
||||
<a href="https://github.com/lucidrains/big-sleep">template</a>
|
||||
|
||||
## Training CLI (wip)
|
||||
|
||||
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
|
||||
|
||||
## Todo
|
||||
|
||||
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
||||
@@ -1047,11 +1110,10 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
|
||||
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
||||
- [ ] speed up inference, read up on papers (ddim or diffusion-gan, etc)
|
||||
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
|
||||
- [x] speed up inference, read up on papers (ddim)
|
||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
- [ ] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
|
||||
## Citations
|
||||
|
||||
@@ -1169,4 +1231,14 @@ Once built, images will be saved to the same directory the command is invoked
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Lugmayr2022RePaintIU,
|
||||
title = {RePaint: Inpainting using Denoising Diffusion Probabilistic Models},
|
||||
author = {Andreas Lugmayr and Martin Danelljan and Andr{\'e}s Romero and Fisher Yu and Radu Timofte and Luc Van Gool},
|
||||
journal = {ArXiv},
|
||||
year = {2022},
|
||||
volume = {abs/2201.09865}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -69,14 +69,12 @@ Settings for controlling the training hyperparameters.
|
||||
| `wd` | No | `0.01` | The weight decay. |
|
||||
| `max_grad_norm`| No | `0.5` | The grad norm clipping. |
|
||||
| `save_every_n_samples` | No | `100000` | Samples will be generated and a checkpoint will be saved every `save_every_n_samples` samples. |
|
||||
| `cond_scale` | No | `1.0` | Conditioning scale to use for sampling. Can also be an array of values, one for each unet. |
|
||||
| `device` | No | `cuda:0` | The device to train on. |
|
||||
| `epoch_samples` | No | `None` | Limits the number of samples iterated through in each epoch. This must be set if resampling. None means no limit. |
|
||||
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
||||
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
||||
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
||||
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
|
||||
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
|
||||
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
|
||||
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
||||
|
||||
**<ins>Evaluate</ins>:**
|
||||
@@ -163,9 +161,10 @@ All save locations have these configuration options
|
||||
| Option | Required | Default | Description |
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
||||
| `save_latest_to` | No | `latest.pth` | Sets the relative path to save the latest model to. |
|
||||
| `save_best_to` | No | `best.pth` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
||||
| `save_type` | No | `'checkpoint'` | The type of save. `'checkpoint'` saves a checkpoint, `'model'` saves a model without any fluff (Saves with ema if ema is enabled). |
|
||||
| `save_latest_to` | No | `None` | Sets the relative path to save the latest model to. |
|
||||
| `save_best_to` | No | `None` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
||||
| `save_meta_to` | No | `None` | The path to save metadata files in. This includes the config files used to start the training. |
|
||||
| `save_type` | No | `checkpoint` | The type of save. `checkpoint` saves a checkpoint, `model` saves a model without any fluff (Saves with ema if ema is enabled). |
|
||||
|
||||
If using `local`
|
||||
| Option | Required | Default | Description |
|
||||
@@ -177,7 +176,6 @@ If using `huggingface`
|
||||
| ------ | -------- | ------- | ----------- |
|
||||
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
||||
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
||||
| `huggingface_base_path` | Yes | N/A | The base path that checkpoints will be saved under. |
|
||||
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
||||
|
||||
If using `wandb`
|
||||
|
||||
@@ -56,9 +56,6 @@
|
||||
"use_ema": true,
|
||||
"ema_beta": 0.99,
|
||||
"amp": false,
|
||||
"save_all": false,
|
||||
"save_latest": true,
|
||||
"save_best": true,
|
||||
"unet_training_mask": [true]
|
||||
},
|
||||
"evaluate": {
|
||||
@@ -96,14 +93,15 @@
|
||||
},
|
||||
|
||||
"save": [{
|
||||
"save_to": "wandb"
|
||||
"save_to": "wandb",
|
||||
"save_latest_to": "latest.pth"
|
||||
}, {
|
||||
"save_to": "huggingface",
|
||||
"huggingface_repo": "Veldrovive/test_model",
|
||||
|
||||
"save_all": true,
|
||||
"save_latest": true,
|
||||
"save_best": true,
|
||||
"save_latest_to": "path/to/model_dir/latest.pth",
|
||||
"save_best_to": "path/to/model_dir/best.pth",
|
||||
"save_meta_to": "path/to/directory/for/assorted/files",
|
||||
|
||||
"save_type": "model"
|
||||
}]
|
||||
|
||||
@@ -61,9 +61,6 @@
|
||||
"use_ema": true,
|
||||
"ema_beta": 0.99,
|
||||
"amp": false,
|
||||
"save_all": false,
|
||||
"save_latest": true,
|
||||
"save_best": true,
|
||||
"unet_training_mask": [true]
|
||||
},
|
||||
"evaluate": {
|
||||
@@ -96,7 +93,8 @@
|
||||
},
|
||||
|
||||
"save": [{
|
||||
"save_to": "local"
|
||||
"save_to": "local",
|
||||
"save_latest_to": "latest.pth"
|
||||
}]
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -4,13 +4,15 @@ import json
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
from itertools import zip_longest
|
||||
from typing import Optional, List, Union
|
||||
from typing import Any, Optional, List, Union
|
||||
from pydantic import BaseModel
|
||||
|
||||
import torch
|
||||
|
||||
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||
from dalle2_pytorch.utils import import_or_print_error
|
||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||
from dalle2_pytorch.version import __version__
|
||||
from packaging import version
|
||||
|
||||
# constants
|
||||
|
||||
@@ -21,16 +23,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
# load file functions
|
||||
|
||||
def load_wandb_file(run_path, file_path, **kwargs):
|
||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
||||
return file_reference.name
|
||||
|
||||
def load_local_file(file_path, **kwargs):
|
||||
return file_path
|
||||
|
||||
class BaseLogger:
|
||||
"""
|
||||
An abstract class representing an object that can log data.
|
||||
@@ -234,7 +226,7 @@ class LocalLoader(BaseLoader):
|
||||
|
||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||
# Makes sure the file exists to be loaded
|
||||
if not self.file_path.exists():
|
||||
if not self.file_path.exists() and not self.only_auto_resume:
|
||||
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
||||
|
||||
def recall(self) -> dict:
|
||||
@@ -283,9 +275,9 @@ def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
|
||||
class BaseSaver:
|
||||
def __init__(self,
|
||||
data_path: str,
|
||||
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
|
||||
save_best_to: Optional[Union[str, bool]] = 'best.pth',
|
||||
save_meta_to: str = './',
|
||||
save_latest_to: Optional[Union[str, bool]] = None,
|
||||
save_best_to: Optional[Union[str, bool]] = None,
|
||||
save_meta_to: Optional[str] = None,
|
||||
save_type: str = 'checkpoint',
|
||||
**kwargs
|
||||
):
|
||||
@@ -295,10 +287,10 @@ class BaseSaver:
|
||||
self.save_best_to = save_best_to
|
||||
self.saving_best = save_best_to is not None and save_best_to is not False
|
||||
self.save_meta_to = save_meta_to
|
||||
self.saving_meta = save_meta_to is not None
|
||||
self.save_type = save_type
|
||||
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
||||
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
|
||||
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
|
||||
assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified'
|
||||
|
||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||
raise NotImplementedError
|
||||
@@ -459,6 +451,11 @@ class Tracker:
|
||||
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
||||
print(f"New logger config: {self.logger.__dict__}")
|
||||
|
||||
self.save_metadata = dict(
|
||||
version = version.parse(__version__)
|
||||
) # Data that will be saved alongside the checkpoint or model
|
||||
self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata
|
||||
|
||||
assert self.logger is not None, '`logger` must be set before `init` is called'
|
||||
if self.dummy_mode:
|
||||
# The only thing we need is a loader
|
||||
@@ -507,8 +504,15 @@ class Tracker:
|
||||
# Save the config under config_name in the root folder of data_path
|
||||
shutil.copy(current_config_path, self.data_path / config_name)
|
||||
for saver in self.savers:
|
||||
remote_path = Path(saver.save_meta_to) / config_name
|
||||
saver.save_file(current_config_path, str(remote_path))
|
||||
if saver.saving_meta:
|
||||
remote_path = Path(saver.save_meta_to) / config_name
|
||||
saver.save_file(current_config_path, str(remote_path))
|
||||
|
||||
def add_save_metadata(self, state_dict_key: str, metadata: Any):
|
||||
"""
|
||||
Adds a new piece of metadata that will be saved along with the model or decoder.
|
||||
"""
|
||||
self.save_metadata[state_dict_key] = metadata
|
||||
|
||||
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
||||
"""
|
||||
@@ -518,24 +522,38 @@ class Tracker:
|
||||
"""
|
||||
assert save_type in ['checkpoint', 'model']
|
||||
if save_type == 'checkpoint':
|
||||
trainer.save(file_path, overwrite=True, **kwargs)
|
||||
# Create a metadata dict without the blacklisted keys so we do not error when we create the state dict
|
||||
metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys}
|
||||
trainer.save(file_path, overwrite=True, **kwargs, **metadata)
|
||||
elif save_type == 'model':
|
||||
if isinstance(trainer, DiffusionPriorTrainer):
|
||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||
state_dict = trainer.unwrap_model(prior).state_dict()
|
||||
torch.save(state_dict, file_path)
|
||||
prior: DiffusionPrior = trainer.unwrap_model(prior)
|
||||
# Remove CLIP if it is part of the model
|
||||
original_clip = prior.clip
|
||||
prior.clip = None
|
||||
model_state_dict = prior.state_dict()
|
||||
prior.clip = original_clip
|
||||
elif isinstance(trainer, DecoderTrainer):
|
||||
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||
# Remove CLIP if it is part of the model
|
||||
original_clip = decoder.clip
|
||||
decoder.clip = None
|
||||
if trainer.use_ema:
|
||||
trainable_unets = decoder.unets
|
||||
decoder.unets = trainer.unets # Swap EMA unets in
|
||||
state_dict = decoder.state_dict()
|
||||
model_state_dict = decoder.state_dict()
|
||||
decoder.unets = trainable_unets # Swap back
|
||||
else:
|
||||
state_dict = decoder.state_dict()
|
||||
torch.save(state_dict, file_path)
|
||||
model_state_dict = decoder.state_dict()
|
||||
decoder.clip = original_clip
|
||||
else:
|
||||
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
||||
state_dict = {
|
||||
**self.save_metadata,
|
||||
'model': model_state_dict
|
||||
}
|
||||
torch.save(state_dict, file_path)
|
||||
return Path(file_path)
|
||||
|
||||
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
||||
|
||||
@@ -129,6 +129,7 @@ class AdapterConfig(BaseModel):
|
||||
class DiffusionPriorNetworkConfig(BaseModel):
|
||||
dim: int
|
||||
depth: int
|
||||
max_text_len: int = None
|
||||
num_timesteps: int = None
|
||||
num_time_embeds: int = 1
|
||||
num_image_embeds: int = 1
|
||||
@@ -136,6 +137,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
|
||||
dim_head: int = 64
|
||||
heads: int = 8
|
||||
ff_mult: int = 4
|
||||
norm_in: bool = False
|
||||
norm_out: bool = True
|
||||
attn_dropout: float = 0.
|
||||
ff_dropout: float = 0.
|
||||
@@ -223,6 +225,7 @@ class UnetConfig(BaseModel):
|
||||
self_attn: ListOrTuple(int)
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
init_cross_embed: bool = True
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
@@ -303,9 +306,11 @@ class DecoderTrainConfig(BaseModel):
|
||||
max_grad_norm: SingularOrIterable(float) = 0.5
|
||||
save_every_n_samples: int = 100000
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
device: str = 'cuda:0'
|
||||
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: int = None # Same as above but for validation.
|
||||
save_immediately: bool = False
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
|
||||
@@ -498,23 +498,27 @@ class DecoderTrainer(nn.Module):
|
||||
warmup_schedulers = []
|
||||
|
||||
for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps in zip(decoder.unets, lr, wd, eps, warmup_steps):
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
if isinstance(unet, nn.Identity):
|
||||
optimizers.append(None)
|
||||
schedulers.append(None)
|
||||
warmup_schedulers.append(None)
|
||||
else:
|
||||
optimizer = get_optimizer(
|
||||
unet.parameters(),
|
||||
lr = unet_lr,
|
||||
wd = unet_wd,
|
||||
eps = unet_eps,
|
||||
group_wd_params = group_wd_params,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
optimizers.append(optimizer)
|
||||
optimizers.append(optimizer)
|
||||
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
|
||||
|
||||
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
|
||||
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
|
||||
warmup_schedulers.append(warmup_scheduler)
|
||||
|
||||
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None
|
||||
warmup_schedulers.append(warmup_scheduler)
|
||||
|
||||
schedulers.append(scheduler)
|
||||
schedulers.append(scheduler)
|
||||
|
||||
if self.use_ema:
|
||||
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
||||
@@ -590,7 +594,8 @@ class DecoderTrainer(nn.Module):
|
||||
for ind in range(0, self.num_unets):
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
save_obj = {**save_obj, optimizer_key: self.accelerator.unwrap_model(optimizer).state_dict()}
|
||||
state_dict = optimizer.state_dict() if optimizer is not None else None
|
||||
save_obj = {**save_obj, optimizer_key: state_dict}
|
||||
|
||||
if self.use_ema:
|
||||
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
||||
@@ -612,8 +617,8 @@ class DecoderTrainer(nn.Module):
|
||||
optimizer_key = f'optim{ind}'
|
||||
optimizer = getattr(self, optimizer_key)
|
||||
warmup_scheduler = self.warmup_schedulers[ind]
|
||||
|
||||
self.accelerator.unwrap_model(optimizer).load_state_dict(loaded_obj[optimizer_key])
|
||||
if optimizer is not None:
|
||||
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
||||
|
||||
if exists(warmup_scheduler):
|
||||
warmup_scheduler.last_step = last_step
|
||||
@@ -673,8 +678,14 @@ class DecoderTrainer(nn.Module):
|
||||
def sample(self, *args, **kwargs):
|
||||
distributed = self.accelerator.num_processes > 1
|
||||
base_decoder = self.accelerator.unwrap_model(self.decoder)
|
||||
|
||||
was_training = base_decoder.training
|
||||
base_decoder.eval()
|
||||
|
||||
if kwargs.pop('use_non_ema', False) or not self.use_ema:
|
||||
return base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
out = base_decoder.sample(*args, **kwargs, distributed = distributed)
|
||||
base_decoder.train(was_training)
|
||||
return out
|
||||
|
||||
trainable_unets = self.accelerator.unwrap_model(self.decoder).unets
|
||||
base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
||||
@@ -687,6 +698,7 @@ class DecoderTrainer(nn.Module):
|
||||
for ema in self.ema_unets:
|
||||
ema.restore_ema_model_device()
|
||||
|
||||
base_decoder.train(was_training)
|
||||
return output
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -707,23 +719,32 @@ class DecoderTrainer(nn.Module):
|
||||
*args,
|
||||
unet_number = None,
|
||||
max_batch_size = None,
|
||||
return_lowres_cond_image=False,
|
||||
**kwargs
|
||||
):
|
||||
unet_number = self.validate_and_return_unet_number(unet_number)
|
||||
|
||||
total_loss = 0.
|
||||
|
||||
|
||||
using_amp = self.accelerator.mixed_precision != 'no'
|
||||
|
||||
cond_images = []
|
||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||
with self.accelerator.autocast():
|
||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||
loss_obj = self.decoder(*chunked_args, unet_number = unet_number, return_lowres_cond_image=return_lowres_cond_image, **chunked_kwargs)
|
||||
# loss_obj may be a tuple with loss and cond_image
|
||||
if return_lowres_cond_image:
|
||||
loss, cond_image = loss_obj
|
||||
else:
|
||||
loss = loss_obj
|
||||
cond_image = None
|
||||
loss = loss * chunk_size_frac
|
||||
if cond_image is not None:
|
||||
cond_images.append(cond_image)
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if self.training:
|
||||
self.accelerator.backward(loss)
|
||||
|
||||
return total_loss
|
||||
if return_lowres_cond_image:
|
||||
return total_loss, torch.stack(cond_images)
|
||||
else:
|
||||
return total_loss
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.20.1'
|
||||
__version__ = '1.0.0'
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from datetime import timedelta
|
||||
|
||||
from dalle2_pytorch.trainer import DecoderTrainer
|
||||
from dalle2_pytorch.dataloaders import create_image_embedding_dataloader
|
||||
@@ -11,11 +12,12 @@ from clip import tokenize
|
||||
|
||||
import torchvision
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchmetrics.image.fid import FrechetInceptionDistance
|
||||
from torchmetrics.image.inception import InceptionScore
|
||||
from torchmetrics.image.kid import KernelInceptionDistance
|
||||
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
|
||||
from accelerate import Accelerator, DistributedDataParallelKwargs
|
||||
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
|
||||
from accelerate.utils import dataclasses as accelerate_dataclasses
|
||||
import webdataset as wds
|
||||
import click
|
||||
@@ -132,7 +134,7 @@ def get_example_data(dataloader, device, n=5):
|
||||
break
|
||||
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
||||
|
||||
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend="", match_image_size=True):
|
||||
def generate_samples(trainer, example_data, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True):
|
||||
"""
|
||||
Takes example data and generates images from the embeddings
|
||||
Returns three lists: real images, generated images, and captions
|
||||
@@ -157,6 +159,13 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
||||
# Then we are using precomputed text embeddings
|
||||
text_embeddings = torch.stack(text_embeddings)
|
||||
sample_params["text_encodings"] = text_embeddings
|
||||
sample_params["start_at_unet_number"] = start_unet
|
||||
sample_params["stop_at_unet_number"] = end_unet
|
||||
if start_unet > 1:
|
||||
# If we are only training upsamplers
|
||||
sample_params["image"] = torch.stack(real_images)
|
||||
if device is not None:
|
||||
sample_params["_device"] = device
|
||||
samples = trainer.sample(**sample_params)
|
||||
generated_images = list(samples)
|
||||
captions = [text_prepend + txt for txt in txts]
|
||||
@@ -165,15 +174,15 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
||||
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
|
||||
return real_images, generated_images, captions
|
||||
|
||||
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
||||
def generate_grid_samples(trainer, examples, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""):
|
||||
"""
|
||||
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
||||
"""
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend)
|
||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||
return grid_images, captions
|
||||
|
||||
def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=False, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None):
|
||||
"""
|
||||
Computes evaluation metrics for the decoder
|
||||
"""
|
||||
@@ -183,7 +192,7 @@ def evaluate_trainer(trainer, dataloader, device, condition_on_text_encodings=Fa
|
||||
if len(examples) == 0:
|
||||
print("No data to evaluate. Check that your dataloader has shards.")
|
||||
return metrics
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings)
|
||||
real_images, generated_images, captions = generate_samples(trainer, examples, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device)
|
||||
real_images = torch.stack(real_images).to(device=device, dtype=torch.float)
|
||||
generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float)
|
||||
# Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8
|
||||
@@ -259,11 +268,13 @@ def train(
|
||||
evaluate_config=None,
|
||||
epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch
|
||||
validation_samples = None,
|
||||
save_immediately=False,
|
||||
epochs = 20,
|
||||
n_sample_images = 5,
|
||||
save_every_n_samples = 100000,
|
||||
unet_training_mask=None,
|
||||
condition_on_text_encodings=False,
|
||||
cond_scale=1.0,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
@@ -271,6 +282,21 @@ def train(
|
||||
"""
|
||||
is_master = accelerator.process_index == 0
|
||||
|
||||
if not exists(unet_training_mask):
|
||||
# Then the unet mask should be true for all unets in the decoder
|
||||
unet_training_mask = [True] * len(decoder.unets)
|
||||
assert len(unet_training_mask) == len(decoder.unets), f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
trainable_unet_numbers = [i+1 for i, trainable in enumerate(unet_training_mask) if trainable]
|
||||
first_trainable_unet = trainable_unet_numbers[0]
|
||||
last_trainable_unet = trainable_unet_numbers[-1]
|
||||
def move_unets(unet_training_mask):
|
||||
for i in range(len(decoder.unets)):
|
||||
if not unet_training_mask[i]:
|
||||
# Replace the unet from the module list with a nn.Identity(). This training script never uses unets that aren't being trained so this is fine.
|
||||
decoder.unets[i] = nn.Identity().to(inference_device)
|
||||
# Remove non-trainable unets
|
||||
move_unets(unet_training_mask)
|
||||
|
||||
trainer = DecoderTrainer(
|
||||
decoder=decoder,
|
||||
accelerator=accelerator,
|
||||
@@ -285,6 +311,7 @@ def train(
|
||||
sample = 0
|
||||
samples_seen = 0
|
||||
val_sample = 0
|
||||
step = lambda: int(trainer.num_steps_taken(unet_number=first_trainable_unet))
|
||||
|
||||
if tracker.can_recall:
|
||||
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
||||
@@ -296,13 +323,6 @@ def train(
|
||||
accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}")
|
||||
trainer.to(device=inference_device)
|
||||
|
||||
if not exists(unet_training_mask):
|
||||
# Then the unet mask should be true for all unets in the decoder
|
||||
unet_training_mask = [True] * trainer.num_unets
|
||||
first_training_unet = min(index for index, mask in enumerate(unet_training_mask) if mask)
|
||||
step = lambda: int(trainer.num_steps_taken(unet_number=first_training_unet+1))
|
||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||
|
||||
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
||||
accelerator.print("This can take a while to load the shard lists...")
|
||||
if is_master:
|
||||
@@ -323,7 +343,7 @@ def train(
|
||||
last_snapshot = sample
|
||||
|
||||
if next_task == 'train':
|
||||
for i, (img, emb, txt) in enumerate(trainer.train_loader):
|
||||
for i, (img, emb, txt) in enumerate(dataloaders["train"]):
|
||||
# We want to count the total number of samples across all processes
|
||||
sample_length_tensor[0] = len(img)
|
||||
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
||||
@@ -358,8 +378,9 @@ def train(
|
||||
else:
|
||||
# Then we need to pass the text instead
|
||||
tokenized_texts = tokenize(txt, truncate=True)
|
||||
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
|
||||
forward_params['text'] = tokenized_texts
|
||||
loss = trainer.forward(img, **forward_params, unet_number=unet)
|
||||
loss = trainer.forward(img, **forward_params, unet_number=unet, _device=inference_device)
|
||||
trainer.update(unet_number=unet)
|
||||
unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss
|
||||
|
||||
@@ -372,10 +393,10 @@ def train(
|
||||
unet_all_losses = accelerator.gather(unet_losses_tensor)
|
||||
mask = unet_all_losses != 0
|
||||
unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0)
|
||||
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if loss != 0 }
|
||||
loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if unet_training_mask[index] }
|
||||
|
||||
# gather decay rate on each UNet
|
||||
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets)}
|
||||
ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets) if unet_training_mask[index]}
|
||||
|
||||
log_data = {
|
||||
"Epoch": epoch,
|
||||
@@ -390,7 +411,7 @@ def train(
|
||||
if is_master:
|
||||
tracker.log(log_data, step=step())
|
||||
|
||||
if is_master and last_snapshot + save_every_n_samples < sample: # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
if is_master and (last_snapshot + save_every_n_samples < sample or (save_immediately and i == 0)): # This will miss by some amount every time, but it's not a big deal... I hope
|
||||
# It is difficult to gather this kind of info on the accelerator, so we have to do it on the master
|
||||
print("Saving snapshot")
|
||||
last_snapshot = sample
|
||||
@@ -398,7 +419,7 @@ def train(
|
||||
save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen)
|
||||
if exists(n_sample_images) and n_sample_images > 0:
|
||||
trainer.eval()
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
if epoch_samples is not None and sample >= epoch_samples:
|
||||
@@ -416,7 +437,7 @@ def train(
|
||||
timer = Timer()
|
||||
accelerator.wait_for_everyone()
|
||||
i = 0
|
||||
for i, (img, emb, txt) in enumerate(trainer.val_loader): # Use the accelerate prepared loader
|
||||
for i, (img, emb, txt) in enumerate(dataloaders['val']): # Use the accelerate prepared loader
|
||||
val_sample_length_tensor[0] = len(img)
|
||||
all_samples = accelerator.gather(val_sample_length_tensor)
|
||||
total_samples = all_samples.sum().item()
|
||||
@@ -448,8 +469,9 @@ def train(
|
||||
else:
|
||||
# Then we need to pass the text instead
|
||||
tokenized_texts = tokenize(txt, truncate=True)
|
||||
assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})"
|
||||
forward_params['text'] = tokenized_texts
|
||||
loss = trainer.forward(img.float(), **forward_params, unet_number=unet)
|
||||
loss = trainer.forward(img.float(), **forward_params, unet_number=unet, _device=inference_device)
|
||||
average_val_loss_tensor[0, unet-1] += loss
|
||||
|
||||
if i % VALID_CALC_LOSS_EVERY_ITERS == 0:
|
||||
@@ -476,7 +498,7 @@ def train(
|
||||
if next_task == 'eval':
|
||||
if exists(evaluate_config):
|
||||
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings)
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
|
||||
if is_master:
|
||||
tracker.log(evaluation, step=step())
|
||||
next_task = 'sample'
|
||||
@@ -487,15 +509,15 @@ def train(
|
||||
# Generate examples and save the model if we are the master
|
||||
# Generate sample images
|
||||
print(print_ribbon(f"Sampling Set {epoch}", repeat=40))
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, condition_on_text_encodings, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, condition_on_text_encodings, "Train: ")
|
||||
test_images, test_captions = generate_grid_samples(trainer, test_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ")
|
||||
train_images, train_captions = generate_grid_samples(trainer, train_example_data, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ")
|
||||
tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step())
|
||||
tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step())
|
||||
|
||||
print(print_ribbon(f"Starting Saving {epoch}", repeat=40))
|
||||
is_best = False
|
||||
if all_average_val_losses is not None:
|
||||
average_loss = all_average_val_losses.mean(dim=0).item()
|
||||
average_loss = all_average_val_losses.mean(dim=0).sum() / sum(unet_training_mask)
|
||||
if len(validation_losses) == 0 or average_loss < min(validation_losses):
|
||||
is_best = True
|
||||
validation_losses.append(average_loss)
|
||||
@@ -512,6 +534,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
|
||||
}
|
||||
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
||||
tracker.save_config(config_path, config_name='decoder_config.json')
|
||||
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
|
||||
return tracker
|
||||
|
||||
def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
@@ -520,7 +543,8 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
|
||||
# Set up accelerator for configurable distributed training
|
||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=60*60))
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs])
|
||||
|
||||
if accelerator.num_processes > 1:
|
||||
# We are using distributed training and want to immediately ensure all can connect
|
||||
|
||||
@@ -126,9 +126,9 @@ def report_cosine_sims(
|
||||
|
||||
# we are text conditioned, we produce an embedding from the tokenized text
|
||||
if text_conditioned:
|
||||
text_embedding, text_encodings, text_mask = trainer.embed_text(text_data)
|
||||
text_embedding, text_encodings = trainer.embed_text(text_data)
|
||||
text_cond = dict(
|
||||
text_embed=text_embedding, text_encodings=text_encodings, mask=text_mask
|
||||
text_embed=text_embedding, text_encodings=text_encodings
|
||||
)
|
||||
else:
|
||||
text_embedding = text_data
|
||||
@@ -146,15 +146,12 @@ def report_cosine_sims(
|
||||
|
||||
if text_conditioned:
|
||||
text_encodings_shuffled = text_encodings[rolled_idx]
|
||||
text_mask_shuffled = text_mask[rolled_idx]
|
||||
else:
|
||||
text_encodings_shuffled = None
|
||||
text_mask_shuffled = None
|
||||
|
||||
text_cond_shuffled = dict(
|
||||
text_embed=text_embed_shuffled,
|
||||
text_encodings=text_encodings_shuffled,
|
||||
mask=text_mask_shuffled,
|
||||
text_encodings=text_encodings_shuffled
|
||||
)
|
||||
|
||||
# prepare the text embedding
|
||||
|
||||
Reference in New Issue
Block a user