Compare commits

..

2 Commits

3 changed files with 16 additions and 3 deletions

View File

@@ -220,6 +220,7 @@ class XClipAdapter(BaseClipAdapter):
encoder_output = self.clip.text_transformer(text)
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
text_embed = self.clip.to_text_latent(text_cls)
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
return EmbeddedText(l2norm(text_embed), text_encodings, text_mask)
@torch.no_grad()
@@ -255,6 +256,7 @@ class CoCaAdapter(BaseClipAdapter):
text = text[..., :self.max_text_len]
text_mask = text != 0
text_embed, text_encodings = self.clip.embed_text(text)
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
return EmbeddedText(text_embed, text_encodings, text_mask)
@torch.no_grad()
@@ -314,6 +316,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
del self.text_encodings
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float(), text_mask)
@@ -1197,6 +1200,7 @@ class DiffusionPrior(nn.Module):
if self.condition_on_text_encodings:
assert exists(text_encodings), 'text encodings must be present for diffusion prior if specified'
text_mask = default(text_mask, lambda: torch.any(text_encodings != 0., dim = -1))
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
# timestep conditioning from ddpm
@@ -2410,6 +2414,9 @@ class Decoder(nn.Module):
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
if self.condition_on_text_encodings:
text_mask = default(text_mask, lambda: torch.any(text_encodings != 0., dim = -1))
img = None
is_cuda = next(self.parameters()).is_cuda
@@ -2493,6 +2500,9 @@ class Decoder(nn.Module):
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
if self.condition_on_text_encodings:
text_mask = default(text_mask, lambda: torch.any(text_encodings != 0., dim = -1))
lowres_cond_img = self.to_lowres_cond(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if unet_number > 1 else None
image = resize_image_to(image, target_image_size)

View File

@@ -1 +1 @@
__version__ = '0.19.6'
__version__ = '0.20.0'

View File

@@ -557,7 +557,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
# Create the decoder model and print basic info
decoder = config.decoder.create()
num_parameters = sum(p.numel() for p in decoder.parameters())
get_num_parameters = lambda model, only_training=False: sum(p.numel() for p in model.parameters() if (p.requires_grad or not only_training))
# Create and initialize the tracker if we are the master
tracker = create_tracker(accelerator, config, config_path, dummy = rank!=0)
@@ -586,7 +586,10 @@ def initialize_training(config: TrainDecoderConfig, config_path):
accelerator.print(print_ribbon("Loaded Config", repeat=40))
accelerator.print(f"Running training with {accelerator.num_processes} processes and {accelerator.distributed_type} distributed training")
accelerator.print(f"Training using {data_source_string}. {'conditioned on text' if conditioning_on_text else 'not conditioned on text'}")
accelerator.print(f"Number of parameters: {num_parameters}")
accelerator.print(f"Number of parameters: {get_num_parameters(decoder)} total; {get_num_parameters(decoder, only_training=True)} training")
for i, unet in enumerate(decoder.unets):
accelerator.print(f"Unet {i} has {get_num_parameters(unet)} total; {get_num_parameters(unet, only_training=True)} training")
train(dataloaders, decoder, accelerator,
tracker=tracker,
inference_device=accelerator.device,