Compare commits

..

1 Commits

3 changed files with 6 additions and 11 deletions

View File

@@ -1059,10 +1059,10 @@ class DiffusionPrior(nn.Module):
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
noise = torch.randn_like(image_embed) if time_next > 0 else 0.
new_noise = torch.randn_like(image_embed)
img = x_start * alpha_next.sqrt() + \
c1 * noise + \
c1 * new_noise + \
c2 * pred_noise
return image_embed
@@ -1537,12 +1537,10 @@ class Unet(nn.Module):
# text encoding conditioning (optional)
self.text_to_cond = None
self.text_embed_dim = None
if cond_on_text_encodings:
assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text_encodings is True'
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
self.text_embed_dim = text_embed_dim
# finer control over whether to condition on image embeddings and text encodings
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
@@ -1771,8 +1769,6 @@ class Unet(nn.Module):
text_tokens = None
if exists(text_encodings) and self.cond_on_text_encodings:
assert self.text_embed_dim == text_encodings.shape[-1], f'the text encodings you are passing in have a dimension of {text_encodings.shape[-1]}, but the unet was created with text_embed_dim of {self.text_embed_dim}.'
text_tokens = self.text_to_cond(text_encodings)
text_tokens = text_tokens[:, :self.max_text_len]
@@ -2047,7 +2043,7 @@ class Decoder(nn.Module):
self.noise_schedulers = nn.ModuleList([])
for ind, (unet_beta_schedule, unet_p2_loss_weight_gamma, sample_timesteps) in enumerate(zip(beta_schedule, p2_loss_weight_gamma, self.sample_timesteps)):
assert not exists(sample_timesteps) or sample_timesteps <= timesteps, f'sampling timesteps {sample_timesteps} must be less than or equal to the number of training timesteps {timesteps} for unet {ind + 1}'
assert sample_timesteps <= timesteps, f'sampling timesteps {sample_timesteps} must be less than or equal to the number of training timesteps {timesteps} for unet {ind + 1}'
noise_scheduler = NoiseScheduler(
beta_schedule = unet_beta_schedule,
@@ -2275,10 +2271,9 @@ class Decoder(nn.Module):
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
noise = torch.randn_like(img) if time_next > 0 else 0.
img = x_start * alpha_next.sqrt() + \
c1 * noise + \
c1 * torch.randn_like(img) + \
c2 * pred_noise
img = self.unnormalize_img(img)

View File

@@ -234,7 +234,7 @@ class DecoderConfig(BaseModel):
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
channels: int = 3
timesteps: int = 1000
sample_timesteps: Optional[SingularOrIterable(int)] = None
sampling_timesteps: Optional[SingularOrIterable(int)] = None
loss_type: str = 'l2'
beta_schedule: ListOrTuple(str) = 'cosine'
learned_variance: bool = True

View File

@@ -1 +1 @@
__version__ = '0.19.4'
__version__ = '0.19.0'