Compare commits

...

2 Commits

3 changed files with 21 additions and 9 deletions

View File

@@ -335,6 +335,10 @@ def approx_standard_normal_cdf(x):
def discretized_gaussian_log_likelihood(x, *, means, log_scales, thres = 0.999):
assert x.shape == means.shape == log_scales.shape
# attempting to correct nan gradients when learned variance is turned on
# in the setting of deepspeed fp16
eps = 1e-12 if x.dtype == torch.float32 else 1e-5
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 1. / 255.)
@@ -349,7 +353,7 @@ def discretized_gaussian_log_likelihood(x, *, means, log_scales, thres = 0.999):
log_cdf_plus,
torch.where(x > thres,
log_one_minus_cdf_min,
log(cdf_delta)))
log(cdf_delta, eps = eps)))
return log_probs

View File

@@ -173,14 +173,26 @@ class DiffusionPriorTrainer(nn.Module):
super().__init__()
assert isinstance(diffusion_prior, DiffusionPrior)
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
assert exists(accelerator) or exists(device), "You must supply some method of obtaining a device."
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
# verbosity
self.verbose = verbose
# assign some helpful member vars
self.accelerator = accelerator
self.device = accelerator.device if exists(accelerator) else device
self.text_conditioned = diffusion_prior.condition_on_text_encodings
# setting the device
if not exists(accelerator) and not exists(device):
diffusion_prior_device = next(diffusion_prior.parameters()).device
self.print(f'accelerator not given, and device not specified: defaulting to device of diffusion prior parameters - {diffusion_prior_device}')
self.device = diffusion_prior_device
else:
self.device = accelerator.device if exists(accelerator) else device
# save model
self.diffusion_prior = diffusion_prior
@@ -214,13 +226,9 @@ class DiffusionPriorTrainer(nn.Module):
self.max_grad_norm = max_grad_norm
# verbosity
self.verbose = verbose
# track steps internally
self.register_buffer('step', torch.tensor([0]))
self.register_buffer('step', torch.tensor([0], device = self.device))
# accelerator wrappers

View File

@@ -1 +1 @@
__version__ = '0.16.9'
__version__ = '0.16.12'