Compare commits

...

2 Commits

3 changed files with 27 additions and 13 deletions

View File

@@ -44,6 +44,7 @@ This library would not have gotten to this working state without the help of
- <a href="https://github.com/krish240574">Kumar</a> for working on the initial diffusion training script
- <a href="https://github.com/rom1504">Romain</a> for the pull request reviews and project management
- <a href="https://github.com/Ciaohe">He Cao</a> and <a href="https://github.com/xiankgx">xiankgx</a> for the Q&A and for identifying of critical bugs
- <a href="https://github.com/marunine">Marunine</a> for identifying issues with resizing of the low resolution conditioner, when training the upsampler, in addition to various other bug fixes
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
@@ -581,7 +582,8 @@ unet1 = Unet(
image_embed_dim = 512,
cond_dim = 128,
channels = 3,
dim_mults=(1, 2, 4, 8)
dim_mults=(1, 2, 4, 8),
cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings (ex. first unet in cascade)
).cuda()
unet2 = Unet(
@@ -598,12 +600,11 @@ decoder = Decoder(
clip = clip,
timesteps = 100,
image_cond_drop_prob = 0.1,
text_cond_drop_prob = 0.5,
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
text_cond_drop_prob = 0.5
).cuda()
for unet_number in (1, 2):
loss = decoder(images, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss = decoder(images, text = text, unet_number = unet_number) # this can optionally be decoder(images, text) if you wish to condition on the text encodings as well, though it was hinted in the paper it didn't do much
loss.backward()
# do above for many steps

View File

@@ -125,14 +125,19 @@ def log(t, eps = 1e-12):
def l2norm(t):
return F.normalize(t, dim = -1)
def resize_image_to(image, target_image_size):
def resize_image_to(image, target_image_size, clamp_range = None):
orig_image_size = image.shape[-1]
if orig_image_size == target_image_size:
return image
scale_factors = target_image_size / orig_image_size
return resize(image, scale_factors = scale_factors)
out = resize(image, scale_factors = scale_factors)
if exists(clamp_range):
out = out.clamp(*clamp_range)
return out
# image normalization functions
# ddpms expect images to be in the range of -1 to 1
@@ -1778,9 +1783,12 @@ class LowresConditioner(nn.Module):
downsample_first = True,
blur_sigma = 0.6,
blur_kernel_size = 3,
input_image_range = None
):
super().__init__()
self.downsample_first = downsample_first
self.input_image_range = input_image_range
self.blur_sigma = blur_sigma
self.blur_kernel_size = blur_kernel_size
@@ -1794,7 +1802,7 @@ class LowresConditioner(nn.Module):
blur_kernel_size = None
):
if self.training and self.downsample_first and exists(downsample_image_size):
cond_fmap = resize_image_to(cond_fmap, downsample_image_size)
cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range)
if self.training:
# when training, blur the low resolution conditional image
@@ -1814,7 +1822,7 @@ class LowresConditioner(nn.Module):
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
cond_fmap = resize_image_to(cond_fmap, target_image_size)
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range)
return cond_fmap
@@ -1930,10 +1938,6 @@ class Decoder(nn.Module):
self.unets.append(one_unet)
self.vaes.append(one_vae.copy_for_eval())
# determine from unets whether conditioning on text encoding is needed
self.condition_on_text_encodings = any([unet.cond_on_text_encodings for unet in self.unets])
# create noise schedulers per unet
if not exists(beta_schedule):
@@ -1972,6 +1976,10 @@ class Decoder(nn.Module):
self.predict_x_start = cast_tuple(predict_x_start, len(unets)) if not predict_x_start_for_latent_diffusion else tuple(map(lambda t: isinstance(t, VQGanVAE), self.vaes))
# input image range
self.input_image_range = (-1. if not auto_normalize_img else 0., 1.)
# cascading ddpm related stuff
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
@@ -1981,6 +1989,7 @@ class Decoder(nn.Module):
downsample_first = lowres_downsample_first,
blur_sigma = blur_sigma,
blur_kernel_size = blur_kernel_size,
input_image_range = self.input_image_range
)
# classifier free guidance
@@ -2012,6 +2021,10 @@ class Decoder(nn.Module):
def device(self):
return self._dummy.device
@property
def condition_on_text_encodings(self):
return any([unet.cond_on_text_encodings for unet in self.unets])
def get_unet(self, unet_number):
assert 0 < unet_number <= len(self.unets)
index = unet_number - 1

View File

@@ -1 +1 @@
__version__ = '0.16.14'
__version__ = '0.16.16'