Compare commits

..

2 Commits

2 changed files with 59 additions and 31 deletions

View File

@@ -45,6 +45,11 @@ def exists(val):
def identity(t, *args, **kwargs):
return t
def first(arr, d = None):
if len(arr) == 0:
return d
return arr[0]
def maybe(fn):
@wraps(fn)
def inner(x):
@@ -351,7 +356,7 @@ def cosine_beta_schedule(timesteps, s = 0.008):
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps, dtype = torch.float64)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
alphas_cumprod = alphas_cumprod / first(alphas_cumprod)
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
@@ -1088,8 +1093,12 @@ class DiffusionPrior(nn.Module):
# decoder
def Upsample(dim):
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def Upsample(dim, dim_out = None):
dim_out = default(dim_out, dim)
return nn.Sequential(
nn.Upsample(scale_factor = 2, mode = 'nearest'),
nn.Conv2d(dim, dim_out, 3, padding = 1)
)
def Downsample(dim, *, dim_out = None):
dim_out = default(dim_out, dim)
@@ -1166,7 +1175,7 @@ class ResnetBlock(nn.Module):
self.block2 = Block(dim_out, dim_out, groups = groups)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x, cond = None, time_emb = None):
def forward(self, x, time_emb = None, cond = None):
scale_shift = None
if exists(self.time_mlp) and exists(time_emb):
@@ -1452,6 +1461,8 @@ class Unet(nn.Module):
# resnet block klass
resnet_groups = cast_tuple(resnet_groups, len(in_out))
top_level_resnet_group = first(resnet_groups)
num_resnet_blocks = cast_tuple(num_resnet_blocks, len(in_out))
assert len(resnet_groups) == len(in_out)
@@ -1462,23 +1473,32 @@ class Unet(nn.Module):
if cross_embed_downsample:
downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes)
# give memory efficient unet an initial resnet block
self.init_resnet_block = ResnetBlock(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None
# layers
self.downs = nn.ModuleList([])
self.ups = nn.ModuleList([])
num_resolutions = len(in_out)
skip_connect_dims = [] # keeping track of skip connection dimensions
for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks)):
is_first = ind == 0
is_last = ind >= (num_resolutions - 1)
layer_cond_dim = cond_dim if not is_first else None
dim_layer = dim_out if memory_efficient else dim_in
skip_connect_dims.append(dim_layer)
self.downs.append(nn.ModuleList([
downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None,
ResnetBlock(dim_out if memory_efficient else dim_in, dim_out, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_out, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
downsample_klass(dim_out) if not is_last and not memory_efficient else None
ResnetBlock(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_layer, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1)
]))
mid_dim = dims[-1]
@@ -1491,17 +1511,17 @@ class Unet(nn.Module):
is_last = ind >= (len(in_out) - 1)
layer_cond_dim = cond_dim if not is_last else None
skip_connect_dim = skip_connect_dims.pop()
self.ups.append(nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_in, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_in, dim_in, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
Upsample(dim_in) if not is_last or memory_efficient else nn.Identity()
ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups),
Residual(LinearAttention(dim_out, **attn_kwargs)) if sparse_attn else nn.Identity(),
nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]),
Upsample(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity()
]))
self.final_conv = nn.Sequential(
ResnetBlock(dim * 2, dim, groups = resnet_groups[0]),
nn.Conv2d(dim, self.channels_out, 1)
)
self.final_resnet_block = ResnetBlock(dim * 2, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group)
self.to_out = nn.Conv2d(dim, self.channels_out, 3, padding = 1)
# if the current settings for the unet are not correct
# for cascading DDPM, then reinit the unet with the right settings
@@ -1665,6 +1685,11 @@ class Unet(nn.Module):
c = self.norm_cond(c)
mid_c = self.norm_mid_cond(mid_c)
# initial resnet block
if exists(self.init_resnet_block):
x = self.init_resnet_block(x, t)
# go through the layers of the unet, down and up
hiddens = []
@@ -1673,38 +1698,41 @@ class Unet(nn.Module):
if exists(pre_downsample):
x = pre_downsample(x)
x = init_block(x, c, t)
x = init_block(x, t, c)
x = sparse_attn(x)
hiddens.append(x)
for resnet_block in resnet_blocks:
x = resnet_block(x, c, t)
hiddens.append(x)
x = resnet_block(x, t, c)
hiddens.append(x)
if exists(post_downsample):
x = post_downsample(x)
x = self.mid_block1(x, mid_c, t)
x = self.mid_block1(x, t, mid_c)
if exists(self.mid_attn):
x = self.mid_attn(x)
x = self.mid_block2(x, mid_c, t)
x = self.mid_block2(x, t, mid_c)
connect_skip = lambda x: torch.cat((x, hiddens.pop() * self.skip_connect_scale), dim = 1)
for init_block, sparse_attn, resnet_blocks, upsample in self.ups:
skip_connect = hiddens.pop() * self.skip_connect_scale
x = torch.cat((x, skip_connect), dim = 1)
x = init_block(x, c, t)
x = connect_skip(x)
x = init_block(x, t, c)
x = sparse_attn(x)
for resnet_block in resnet_blocks:
x = resnet_block(x, c, t)
x = connect_skip(x)
x = resnet_block(x, t, c)
x = upsample(x)
x = torch.cat((x, r), dim = 1)
return self.final_conv(x)
x = self.final_resnet_block(x, t)
return self.to_out(x)
class LowresConditioner(nn.Module):
def __init__(
@@ -1771,7 +1799,7 @@ class Decoder(nn.Module):
image_sizes = None, # for cascading ddpm, image size at each stage
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
blur_sigma = (0.1, 0.2), # cascading ddpm - blur sigma
blur_sigma = 0.6, # cascading ddpm - blur sigma
blur_kernel_size = 3, # cascading ddpm - blur kernel size
clip_denoised = True,
clip_x_start = True,
@@ -2299,6 +2327,6 @@ class DALLE2(nn.Module):
images = list(map(self.to_pil, images.unbind(dim = 0)))
if one_text:
return images[0]
return first(images)
return images

View File

@@ -1 +1 @@
__version__ = '0.12.4'
__version__ = '0.14.1'