mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-13 20:14:24 +01:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b90364695d | ||
|
|
868c001199 | ||
|
|
032e83b0e0 |
@@ -368,7 +368,8 @@ unet1 = Unet(
|
||||
image_embed_dim = 512,
|
||||
cond_dim = 128,
|
||||
channels = 3,
|
||||
dim_mults=(1, 2, 4, 8)
|
||||
dim_mults=(1, 2, 4, 8),
|
||||
cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings
|
||||
).cuda()
|
||||
|
||||
unet2 = Unet(
|
||||
@@ -385,8 +386,7 @@ decoder = Decoder(
|
||||
clip = clip,
|
||||
timesteps = 100,
|
||||
image_cond_drop_prob = 0.1,
|
||||
text_cond_drop_prob = 0.5,
|
||||
condition_on_text_encodings = False # set this to True if you wish to condition on text during training and sampling
|
||||
text_cond_drop_prob = 0.5
|
||||
).cuda()
|
||||
|
||||
for unet_number in (1, 2):
|
||||
|
||||
@@ -1781,13 +1781,6 @@ class Decoder(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.unconditional = unconditional
|
||||
|
||||
# text conditioning
|
||||
|
||||
assert not (condition_on_text_encodings and unconditional), 'unconditional decoder image generation cannot be set to True if conditioning on text is present'
|
||||
self.condition_on_text_encodings = condition_on_text_encodings
|
||||
|
||||
# clip
|
||||
|
||||
self.clip = None
|
||||
@@ -1819,12 +1812,16 @@ class Decoder(nn.Module):
|
||||
|
||||
self.channels = channels
|
||||
|
||||
# automatically take care of ensuring that first unet is unconditional
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
# verify conditioning method
|
||||
|
||||
unets = cast_tuple(unet)
|
||||
num_unets = len(unets)
|
||||
|
||||
self.unconditional = unconditional
|
||||
|
||||
# automatically take care of ensuring that first unet is unconditional
|
||||
# while the rest of the unets are conditioned on the low resolution image produced by previous unet
|
||||
|
||||
vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels))
|
||||
|
||||
# whether to use learned variance, defaults to True for the first unet in the cascade, as in paper
|
||||
@@ -1852,7 +1849,7 @@ class Decoder(nn.Module):
|
||||
one_unet = one_unet.cast_model_parameters(
|
||||
lowres_cond = not is_first,
|
||||
cond_on_image_embeds = not unconditional and is_first,
|
||||
cond_on_text_encodings = not unconditional and (is_first or one_unet.cond_on_text_encodings),
|
||||
cond_on_text_encodings = not unconditional and one_unet.cond_on_text_encodings,
|
||||
channels = unet_channels,
|
||||
channels_out = unet_channels_out
|
||||
)
|
||||
@@ -1860,6 +1857,10 @@ class Decoder(nn.Module):
|
||||
self.unets.append(one_unet)
|
||||
self.vaes.append(one_vae.copy_for_eval())
|
||||
|
||||
# determine from unets whether conditioning on text encoding is needed
|
||||
|
||||
self.condition_on_text_encodings = any([unet.cond_on_text_encodings for unet in self.unets])
|
||||
|
||||
# create noise schedulers per unet
|
||||
|
||||
if not exists(beta_schedule):
|
||||
|
||||
@@ -158,6 +158,8 @@ class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
attn_dim_head: int = 32
|
||||
@@ -170,7 +172,6 @@ class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
condition_on_text_encodings: bool = False
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
@@ -283,21 +284,27 @@ class TrainDecoderConfig(BaseModel):
|
||||
def check_has_embeddings(cls, values):
|
||||
# Makes sure that enough information is provided to get the embeddings specified for training
|
||||
data_config, decoder_config = values.get('data'), values.get('decoder')
|
||||
if data_config is None or decoder_config is None:
|
||||
|
||||
if not exists(data_config) or not exists(decoder_config):
|
||||
# Then something else errored and we should just pass through
|
||||
return values
|
||||
using_text_embeddings = decoder_config.condition_on_text_encodings
|
||||
|
||||
using_text_encodings = any([unet.cond_on_text_encodings for unet in decoder_config.unets])
|
||||
using_clip = exists(decoder_config.clip)
|
||||
img_emb_url = data_config.img_embeddings_url
|
||||
text_emb_url = data_config.text_embeddings_url
|
||||
|
||||
if using_text_embeddings:
|
||||
# Then we need some way to get the embeddings
|
||||
assert using_clip or text_emb_url is not None, 'If condition_on_text_encodings is true, either clip or text_embeddings_url must be provided'
|
||||
assert using_clip or exists(text_emb_url), 'If text conditioning, either clip or text_embeddings_url must be provided'
|
||||
|
||||
if using_clip:
|
||||
if using_text_embeddings:
|
||||
assert text_emb_url is None or img_emb_url is None, 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
|
||||
assert not exists(text_emb_url) or not exists(img_emb_url), 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the text embeddings'
|
||||
else:
|
||||
assert img_emb_url is None, 'Loaded clip, but also provided img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
|
||||
assert not exists(img_emb_url), 'Loaded clip, but also provided img_embeddings_url. This is redundant. Remove the clip model or the embeddings'
|
||||
|
||||
if text_emb_url:
|
||||
assert using_text_embeddings, "Text embeddings are being loaded, but text embeddings are not being conditioned on. This will slow down the dataloader for no reason."
|
||||
|
||||
return values
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.12.0'
|
||||
__version__ = '0.12.2'
|
||||
|
||||
@@ -596,9 +596,11 @@ def initialize_training(config, config_path):
|
||||
|
||||
has_img_embeddings = config.data.img_embeddings_url is not None
|
||||
has_text_embeddings = config.data.text_embeddings_url is not None
|
||||
conditioning_on_text = config.decoder.condition_on_text_encodings
|
||||
conditioning_on_text = any([unet.cond_on_text_encodings for unet in config.decoder.unets])
|
||||
|
||||
has_clip_model = config.decoder.clip is not None
|
||||
data_source_string = ""
|
||||
|
||||
if has_img_embeddings:
|
||||
data_source_string += "precomputed image embeddings"
|
||||
elif has_clip_model:
|
||||
@@ -622,7 +624,7 @@ def initialize_training(config, config_path):
|
||||
inference_device=accelerator.device,
|
||||
load_config=config.load,
|
||||
evaluate_config=config.evaluate,
|
||||
condition_on_text_encodings=config.decoder.condition_on_text_encodings,
|
||||
condition_on_text_encodings=conditioning_on_text,
|
||||
**config.train.dict(),
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user