Compare commits

...

7 Commits

Author SHA1 Message Date
Phil Wang
c8422ffd5d fix EMA updating buffers with non-float tensors 2022-06-22 07:16:39 -07:00
Conight
2aadc23c7c Fix train decoder config example (#160) 2022-06-21 22:17:06 -07:00
Phil Wang
c098f57e09 EMA for vqgan vae comes from ema_pytorch now 2022-06-20 15:29:08 -07:00
Phil Wang
0021535c26 move ema to external repo 2022-06-20 11:48:32 -07:00
Phil Wang
56883910fb cleanup 2022-06-20 11:14:55 -07:00
Phil Wang
893f270012 project management 2022-06-20 10:00:22 -07:00
Phil Wang
f545ce18f4 be able to turn off p2 loss reweighting for upsamplers 2022-06-20 09:43:31 -07:00
7 changed files with 24 additions and 205 deletions

View File

@@ -1017,33 +1017,6 @@ The most significant parameters for the script are as follows:
- `clip`, default = `None` # Signals the prior to use pre-computed embeddings
#### Loading and Saving the DiffusionPrior model
Two methods are provided, load_diffusion_model and save_diffusion_model, the names being self-explanatory.
```python
from dalle2_pytorch.train import load_diffusion_model, save_diffusion_model
```
##### Loading
load_diffusion_model(dprior_path, device)
dprior_path : path to saved model(.pth)
device : the cuda device you're running on
##### Saving
save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim)
save_path : path to save at
model : object of Diffusion_Prior
optimizer : optimizer object - see train_diffusion_prior.py for how to create one.
e.g: optimizer = get_optimizer(diffusion_prior.net.parameters(), wd=weight_decay, lr=learning_rate)
scaler : a GradScaler object.
e.g: scaler = GradScaler(enabled=amp)
config : config object created in train_diffusion_prior.py - see file for example.
image_embed_dim - the dimension of the image_embedding
e.g: 768
## CLI (wip)
```bash
@@ -1092,19 +1065,14 @@ Once built, images will be saved to the same directory the command is invoked
- [x] for both diffusion prior and decoder, all exponential moving averaged models needs to be saved and restored as well (as well as the step number)
- [x] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
- [x] allow for creation of diffusion prior model off pydantic config classes - consider the same for tracker configs
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
- [x] allow for unet to be able to condition non-cross attention style as well
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
- [ ] transcribe code to Jax, which lowers the activation energy for distributed training, given access to TPUs
- [ ] train on a toy task, offer in colab
- [ ] think about how best to design a declarative training config that handles preencoding for prior and training of multiple networks in decoder
- [ ] extend diffusion head to use diffusion-gan (potentially using lightweight-gan) to speed up inference
- [ ] speed up inference, read up on papers (ddim or diffusion-gan, etc)
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
- [ ] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
- [ ] make sure FILIP works with DALL-E2 from x-clip https://arxiv.org/abs/2111.07783
- [ ] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
- [ ] decoder needs one day worth of refactor for tech debt
- [ ] allow for unet to be able to condition non-cross attention style as well
- [ ] read the paper, figure it out, and build it https://github.com/lucidrains/DALLE2-pytorch/issues/89
- [ ] build infilling
## Citations

View File

@@ -15,7 +15,7 @@
"channels": 3,
"timesteps": 1000,
"loss_type": "l2",
"beta_schedule": "cosine",
"beta_schedule": ["cosine"],
"learned_variance": true
},
"data": {

View File

@@ -1866,14 +1866,17 @@ class Decoder(nn.Module):
if not exists(beta_schedule):
beta_schedule = ('cosine', *(('cosine',) * max(num_unets - 2, 0)), *(('linear',) * int(num_unets > 1)))
beta_schedule = cast_tuple(beta_schedule, num_unets)
p2_loss_weight_gamma = cast_tuple(p2_loss_weight_gamma, num_unets)
self.noise_schedulers = nn.ModuleList([])
for unet_beta_schedule in beta_schedule:
for unet_beta_schedule, unet_p2_loss_weight_gamma in zip(beta_schedule, p2_loss_weight_gamma):
noise_scheduler = NoiseScheduler(
beta_schedule = unet_beta_schedule,
timesteps = timesteps,
loss_type = loss_type,
p2_loss_weight_gamma = p2_loss_weight_gamma,
p2_loss_weight_gamma = unet_p2_loss_weight_gamma,
p2_loss_weight_k = p2_loss_weight_k
)

View File

@@ -14,6 +14,8 @@ from dalle2_pytorch.optimizer import get_optimizer
from dalle2_pytorch.version import __version__
from packaging import version
from ema_pytorch import EMA
from accelerate import Accelerator
import numpy as np
@@ -62,16 +64,6 @@ def num_to_groups(num, divisor):
arr.append(remainder)
return arr
def clamp(value, min_value = None, max_value = None):
assert exists(min_value) or exists(max_value)
if exists(min_value):
value = max(value, min_value)
if exists(max_value):
value = min(value, max_value)
return value
# decorators
def cast_torch_tensor(fn):
@@ -145,146 +137,6 @@ def split_args_and_kwargs(*args, split_size = None, **kwargs):
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# saving and loading functions
# for diffusion prior
def load_diffusion_model(dprior_path, device):
dprior_path = Path(dprior_path)
assert dprior_path.exists(), 'Dprior model file does not exist'
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
# Get hyperparameters of loaded model
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
dp_config = loaded_obj['hparams']['diffusion_prior']
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
# DiffusionPriorNetwork
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
# DiffusionPrior with text embeddings and image embeddings pre-computed
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
# Load state dict from saved model
diffusion_prior.load_state_dict(loaded_obj['model'])
return diffusion_prior, loaded_obj
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
# Saving State Dict
print_ribbon('Saving checkpoint')
state_dict = dict(model=model.state_dict(),
optimizer=optimizer.state_dict(),
scaler=scaler.state_dict(),
hparams = config,
image_embed_dim = {"image_embed_dim":image_embed_dim})
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
# exponential moving average wrapper
class EMA(nn.Module):
"""
Implements exponential moving average shadowing for your model.
Utilizes an inverse decay schedule to manage longer term training runs.
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
good values for models you plan to train for a million or more steps (reaches decay
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 1.
min_value (float): The minimum EMA decay rate. Default: 0.
"""
def __init__(
self,
model,
beta = 0.9999,
update_after_step = 100,
update_every = 10,
inv_gamma = 1.0,
power = 2/3,
min_value = 0.0,
):
super().__init__()
self.beta = beta
self.online_model = model
self.ema_model = copy.deepcopy(model)
self.update_every = update_every
self.update_after_step = update_after_step
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
self.register_buffer('initted', torch.Tensor([False]))
self.register_buffer('step', torch.tensor([0]))
def restore_ema_model_device(self):
device = self.initted.device
self.ema_model.to(device)
def copy_params_from_model_to_ema(self):
for ma_param, current_param in zip(list(self.ema_model.parameters()), list(self.online_model.parameters())):
ma_param.data.copy_(current_param.data)
for ma_buffer, current_buffer in zip(list(self.ema_model.buffers()), list(self.online_model.buffers())):
ma_buffer.data.copy_(current_buffer.data)
def get_current_decay(self):
epoch = clamp(self.step.item() - self.update_after_step - 1, min_value = 0)
value = 1 - (1 + epoch / self.inv_gamma) ** - self.power
if epoch <= 0:
return 0.
return clamp(value, min_value = self.min_value, max_value = self.beta)
def update(self):
step = self.step.item()
self.step += 1
if (step % self.update_every) != 0:
return
if step <= self.update_after_step:
self.copy_params_from_model_to_ema()
return
if not self.initted.item():
self.copy_params_from_model_to_ema()
self.initted.data.copy_(torch.Tensor([True]))
self.update_moving_average(self.ema_model, self.online_model)
@torch.no_grad()
def update_moving_average(self, ma_model, current_model):
current_decay = self.get_current_decay()
for current_params, ma_params in zip(list(current_model.parameters()), list(ma_model.parameters())):
difference = ma_params.data - current_params.data
difference.mul_(1.0 - current_decay)
ma_params.sub_(difference)
for current_buffer, ma_buffer in zip(list(current_model.buffers()), list(ma_model.buffers())):
difference = ma_buffer - current_buffer
difference.mul_(1.0 - current_decay)
ma_buffer.sub_(difference)
def __call__(self, *args, **kwargs):
return self.ema_model(*args, **kwargs)
# diffusion prior trainer
def prior_sample_in_chunks(fn):
@@ -505,26 +357,20 @@ class DiffusionPriorTrainer(nn.Module):
@cast_torch_tensor
@prior_sample_in_chunks
def p_sample_loop(self, *args, **kwargs):
if self.use_ema:
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
else:
return self.diffusion_prior.p_sample_loop(*args, **kwargs)
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
return model.p_sample_loop(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor
@prior_sample_in_chunks
def sample(self, *args, **kwargs):
if self.use_ema:
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
else:
return self.diffusion_prior.sample(*args, **kwargs)
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
return model.sample(*args, **kwargs)
@torch.no_grad()
def sample_batch_size(self, *args, **kwargs):
if self.use_ema:
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
else:
return self.diffusion_prior.sample_batch_size(*args, **kwargs)
model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior
return model.sample_batch_size(*args, **kwargs)
@torch.no_grad()
@cast_torch_tensor

View File

@@ -1 +1 @@
__version__ = '0.11.1'
__version__ = '0.11.4'

View File

@@ -16,10 +16,11 @@ from torchvision.utils import make_grid, save_image
from einops import rearrange
from dalle2_pytorch.train import EMA
from dalle2_pytorch.vqgan_vae import VQGanVAE
from dalle2_pytorch.optimizer import get_optimizer
from ema_pytorch import EMA
# helpers
def exists(val):
@@ -97,7 +98,7 @@ class VQGanVAETrainer(nn.Module):
valid_frac = 0.05,
random_split_seed = 42,
ema_beta = 0.995,
ema_update_after_step = 2000,
ema_update_after_step = 500,
ema_update_every = 10,
apply_grad_penalty_every = 4,
amp = False

View File

@@ -28,6 +28,7 @@ setup(
'click',
'clip-anytorch',
'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7',
'einops>=0.4',
'einops-exts>=0.0.3',
'embedding-reader',