mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 19:44:26 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8bbc956ff1 | ||
|
|
22019fddeb | ||
|
|
6fb7e91343 | ||
|
|
ba58ae0bf2 | ||
|
|
1cc5d0afa7 |
11
README.md
11
README.md
@@ -1126,6 +1126,7 @@ For detailed information on training the diffusion prior, please refer to the [d
|
||||
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||
- [x] add the final combination of upsample feature maps, used in unet squared, seems to have an effect in local experiments
|
||||
- [ ] consider elucidated dalle2 https://arxiv.org/abs/2206.00364
|
||||
- [ ] add simple outpainting, text-guided 2x size the image for starters
|
||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||
|
||||
## Citations
|
||||
@@ -1285,4 +1286,14 @@ For detailed information on training the diffusion prior, please refer to the [d
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Sunkara2022NoMS,
|
||||
title = {No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects},
|
||||
author = {Raja Sunkara and Tie Luo},
|
||||
journal = {ArXiv},
|
||||
year = {2022},
|
||||
volume = {abs/2208.03641}
|
||||
}
|
||||
```
|
||||
|
||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||
|
||||
@@ -1070,7 +1070,7 @@ class DiffusionPriorNetwork(nn.Module):
|
||||
|
||||
null_text_embeds = self.null_text_embeds.to(text_embed.dtype)
|
||||
|
||||
text_embeds = torch.where(
|
||||
text_embed = torch.where(
|
||||
text_keep_mask,
|
||||
text_embed,
|
||||
null_text_embeds
|
||||
@@ -1166,6 +1166,10 @@ class DiffusionPrior(nn.Module):
|
||||
|
||||
self.net = net
|
||||
self.image_embed_dim = default(image_embed_dim, lambda: clip.dim_latent)
|
||||
|
||||
assert net.dim == self.image_embed_dim, f'your diffusion prior network has a dimension of {net.dim}, but you set your image embedding dimension (keyword image_embed_dim) on DiffusionPrior to {self.image_embed_dim}'
|
||||
assert not exists(clip) or clip.dim_latent == self.image_embed_dim, f'you passed in a CLIP to the diffusion prior with latent dimensions of {clip.dim_latent}, but your image embedding dimension (keyword image_embed_dim) for the DiffusionPrior was set to {self.image_embed_dim}'
|
||||
|
||||
self.channels = default(image_channels, lambda: clip.image_channels)
|
||||
|
||||
self.text_cond_drop_prob = default(text_cond_drop_prob, cond_drop_prob)
|
||||
@@ -1255,7 +1259,7 @@ class DiffusionPrior(nn.Module):
|
||||
def p_sample_loop_ddim(self, shape, text_cond, *, timesteps, eta = 1., cond_scale = 1.):
|
||||
batch, device, alphas, total_timesteps = shape[0], self.device, self.noise_scheduler.alphas_cumprod_prev, self.noise_scheduler.num_timesteps
|
||||
|
||||
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
||||
times = torch.linspace(-1., total_timesteps, steps = timesteps + 1)[:-1]
|
||||
|
||||
times = list(reversed(times.int().tolist()))
|
||||
time_pairs = list(zip(times[:-1], times[1:]))
|
||||
@@ -1290,6 +1294,10 @@ class DiffusionPrior(nn.Module):
|
||||
if self.predict_x_start and self.sampling_clamp_l2norm:
|
||||
x_start = self.l2norm_clamp_embed(x_start)
|
||||
|
||||
if time_next < 0:
|
||||
image_embed = x_start
|
||||
continue
|
||||
|
||||
c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
|
||||
c2 = ((1 - alpha_next) - torch.square(c1)).sqrt()
|
||||
noise = torch.randn_like(image_embed) if time_next > 0 else 0.
|
||||
@@ -1479,9 +1487,14 @@ class PixelShuffleUpsample(nn.Module):
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
def Downsample(dim, *, dim_out = None):
|
||||
def Downsample(dim, dim_out = None):
|
||||
# https://arxiv.org/abs/2208.03641 shows this is the most optimal way to downsample
|
||||
# named SP-conv in the paper, but basically a pixel unshuffle
|
||||
dim_out = default(dim_out, dim)
|
||||
return nn.Conv2d(dim, dim_out, 4, 2, 1)
|
||||
return nn.Sequential(
|
||||
Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2),
|
||||
nn.Conv2d(dim * 4, dim_out, 1)
|
||||
)
|
||||
|
||||
class WeightStandardizedConv2d(nn.Conv2d):
|
||||
"""
|
||||
@@ -2836,12 +2849,13 @@ class Decoder(nn.Module):
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
):
|
||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod, self.ddim_sampling_eta
|
||||
|
||||
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
||||
|
||||
times = list(reversed(times.int().tolist()))
|
||||
time_pairs = list(zip(times[:-1], times[1:]))
|
||||
time_pairs = list(filter(lambda t: t[0] > t[1], time_pairs))
|
||||
|
||||
is_inpaint = exists(inpaint_image)
|
||||
resample_times = inpaint_resample_times if is_inpaint else 1
|
||||
|
||||
@@ -519,7 +519,7 @@ class DecoderTrainer(nn.Module):
|
||||
clip = decoder.clip
|
||||
clip.to(precision_type)
|
||||
|
||||
decoder, train_dataloader, *optimizers = list(self.accelerator.prepare(decoder, dataloaders['train'], *optimizers))
|
||||
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
|
||||
|
||||
self.decoder = decoder
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.9.0'
|
||||
__version__ = '1.10.4'
|
||||
|
||||
Reference in New Issue
Block a user