mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 10:54:42 +01:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3df86acc8b | ||
|
|
de5e628773 | ||
|
|
1b4046b039 |
11
README.md
11
README.md
@@ -49,6 +49,7 @@ This library would not have gotten to this working state without the help of
|
|||||||
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
- <a href="https://github.com/crowsonkb">Katherine</a> for her advice
|
||||||
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
|
- <a href="https://stability.ai/">Stability AI</a> for the generous sponsorship
|
||||||
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
|
- <a href="https://huggingface.co">🤗 Huggingface</a> and in particular <a href="https://github.com/sgugger">Sylvain</a> for the <a href="https://github.com/huggingface/accelerate">Accelerate</a> library
|
||||||
|
- <a href="https://github.com/arogozhnikov">Alex</a> for <a href="https://github.com/arogozhnikov/einops">einops</a>, indispensable tool for tensor manipulation
|
||||||
|
|
||||||
... and many others. Thank you! 🙏
|
... and many others. Thank you! 🙏
|
||||||
|
|
||||||
@@ -1274,4 +1275,14 @@ For detailed information on training the diffusion prior, please refer to the [d
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@inproceedings{rogozhnikov2022einops,
|
||||||
|
title = {Einops: Clear and Reliable Tensor Manipulations with Einstein-like Notation},
|
||||||
|
author = {Alex Rogozhnikov},
|
||||||
|
booktitle = {International Conference on Learning Representations},
|
||||||
|
year = {2022},
|
||||||
|
url = {https://openreview.net/forum?id=oapKSVM2bcj}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||||
|
|||||||
@@ -250,9 +250,13 @@ class XClipAdapter(BaseClipAdapter):
|
|||||||
text = text[..., :self.max_text_len]
|
text = text[..., :self.max_text_len]
|
||||||
text_mask = text != 0
|
text_mask = text != 0
|
||||||
encoder_output = self.clip.text_transformer(text)
|
encoder_output = self.clip.text_transformer(text)
|
||||||
text_cls, text_encodings = encoder_output[:, 0], encoder_output[:, 1:]
|
|
||||||
|
text_cls, text_encodings = (encoder_output[:, 0], encoder_output[:, 1:]) if encoder_output.ndim == 3 else (encoder_output, None)
|
||||||
text_embed = self.clip.to_text_latent(text_cls)
|
text_embed = self.clip.to_text_latent(text_cls)
|
||||||
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
|
||||||
|
if exists(text_encodings):
|
||||||
|
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
||||||
|
|
||||||
return EmbeddedText(l2norm(text_embed), text_encodings)
|
return EmbeddedText(l2norm(text_embed), text_encodings)
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '1.8.2'
|
__version__ = '1.8.3'
|
||||||
|
|||||||
Reference in New Issue
Block a user