Compare commits

..

1 Commits
1.5.0 ... 1.4.1

4 changed files with 21 additions and 150 deletions

View File

@@ -627,18 +627,6 @@ images = dalle2(
# save your image (in this example, of size 256x256)
```
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
```bash
$ pip install open-clip-torch
```
```python
from dalle2_pytorch import OpenClipAdapter
clip = OpenClipAdapter()
```
Now you'll just have to worry about training the Prior and the Decoder!
## Inpainting

View File

@@ -8,7 +8,6 @@ from pathlib import Path
import torch
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from torch import nn, einsum
import torchvision.transforms as T
@@ -109,28 +108,6 @@ def pad_tuple_to_length(t, length, fillvalue = None):
return t
return (*t, *((fillvalue,) * remain_length))
# checkpointing helper function
def make_checkpointable(fn, **kwargs):
if isinstance(fn, nn.ModuleList):
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
condition = kwargs.pop('condition', None)
if exists(condition) and not condition(fn):
return fn
@wraps(fn)
def inner(*args):
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
if not input_needs_grad:
return fn(*args)
return checkpoint(fn, *args)
return inner
# for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad):
@@ -362,75 +339,6 @@ class OpenAIClipAdapter(BaseClipAdapter):
image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None)
class OpenClipAdapter(BaseClipAdapter):
def __init__(
self,
name = 'ViT-B/32',
pretrained = 'laion400m_e32'
):
import open_clip
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
super().__init__(clip)
self.eos_id = 49407
text_attention_final = self.find_layer('ln_final')
self.handle = text_attention_final.register_forward_hook(self._hook)
self.clip_normalize = preprocess.transforms[-1]
self.cleared = False
def find_layer(self, layer):
modules = dict([*self.clip.named_modules()])
return modules.get(layer, None)
def clear(self):
if self.cleared:
return
self.handle()
def _hook(self, _, inputs, outputs):
self.text_encodings = outputs
@property
def dim_latent(self):
return 512
@property
def image_size(self):
return self.clip.visual.image_size
@property
def image_channels(self):
return 3
@property
def max_text_len(self):
return self.clip.context_length
@torch.no_grad()
def embed_text(self, text):
text = text[..., :self.max_text_len]
is_eos_id = (text == self.eos_id)
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
assert not self.cleared
text_embed = self.clip.encode_text(text)
text_encodings = self.text_encodings
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
del self.text_encodings
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
@torch.no_grad()
def embed_image(self, image):
assert not self.cleared
image = self.validate_and_resize_image(image)
image = self.clip_normalize(image)
image_embed = self.clip.encode_image(image)
return EmbeddedImage(l2norm(image_embed.float()), None)
# classifier free guidance functions
def prob_mask_like(shape, prob, device):
@@ -672,7 +580,7 @@ class ChanLayerNorm(nn.Module):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) * (var + eps).rsqrt() * self.g
return (x - mean) * (var + self.eps).rsqrt() * self.g
class Residual(nn.Module):
def __init__(self, fn):
@@ -793,12 +701,11 @@ class Attention(nn.Module):
dropout = 0.,
causal = False,
rotary_emb = None,
cosine_sim = True,
cosine_sim_scale = 16
pb_relax_alpha = 128
):
super().__init__()
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
self.cosine_sim = cosine_sim
self.pb_relax_alpha = pb_relax_alpha
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
self.heads = heads
inner_dim = dim_head * heads
@@ -838,13 +745,6 @@ class Attention(nn.Module):
k = torch.cat((nk, k), dim = -2)
v = torch.cat((nv, v), dim = -2)
# whether to use cosine sim
if self.cosine_sim:
q, k = map(l2norm, (q, k))
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
# calculate query / key similarities
sim = einsum('b h i d, b j d -> b h i j', q, k)
@@ -870,6 +770,9 @@ class Attention(nn.Module):
# attention
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
sim = sim * self.pb_relax_alpha
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
@@ -1582,8 +1485,7 @@ class LinearAttention(nn.Module):
self,
dim,
dim_head = 32,
heads = 8,
**kwargs
heads = 8
):
super().__init__()
self.scale = dim_head ** -0.5
@@ -1702,7 +1604,6 @@ class Unet(nn.Module):
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
sparse_attn = False,
cosine_sim_cross_attn = False,
cosine_sim_self_attn = False,
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
cond_on_text_encodings = False,
max_text_len = 256,
@@ -1721,7 +1622,6 @@ class Unet(nn.Module):
pixel_shuffle_upsample = True,
final_conv_kernel_size = 1,
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
checkpoint_during_training = False,
**kwargs
):
super().__init__()
@@ -1824,7 +1724,7 @@ class Unet(nn.Module):
# attention related params
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
self_attn = cast_tuple(self_attn, num_stages)
@@ -1932,10 +1832,6 @@ class Unet(nn.Module):
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
# whether to checkpoint during training
self.checkpoint_during_training = checkpoint_during_training
# if the current settings for the unet are not correct
# for cascading DDPM, then reinit the unet with the right settings
def cast_model_parameters(
@@ -1993,8 +1889,7 @@ class Unet(nn.Module):
image_cond_drop_prob = 0.,
text_cond_drop_prob = 0.,
blur_sigma = None,
blur_kernel_size = None,
disable_checkpoint = False
blur_kernel_size = None
):
batch_size, device = x.shape[0], x.device
@@ -2116,29 +2011,17 @@ class Unet(nn.Module):
c = self.norm_cond(c)
mid_c = self.norm_mid_cond(mid_c)
# gradient checkpointing
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
# make checkpointable modules
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
# initial resnet block
if exists(init_resnet_block):
x = init_resnet_block(x, t)
if exists(self.init_resnet_block):
x = self.init_resnet_block(x, t)
# go through the layers of the unet, down and up
down_hiddens = []
up_hiddens = []
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
if exists(pre_downsample):
x = pre_downsample(x)
@@ -2154,16 +2037,16 @@ class Unet(nn.Module):
if exists(post_downsample):
x = post_downsample(x)
x = mid_block1(x, t, mid_c)
x = self.mid_block1(x, t, mid_c)
if exists(mid_attn):
x = mid_attn(x)
if exists(self.mid_attn):
x = self.mid_attn(x)
x = mid_block2(x, t, mid_c)
x = self.mid_block2(x, t, mid_c)
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
for init_block, resnet_blocks, attn, upsample in ups:
for init_block, resnet_blocks, attn, upsample in self.ups:
x = connect_skip(x)
x = init_block(x, t, c)
@@ -2180,7 +2063,7 @@ class Unet(nn.Module):
x = torch.cat((x, r), dim = 1)
x = final_resnet_block(x, t)
x = self.final_resnet_block(x, t)
if exists(lowres_cond_img):
x = torch.cat((x, lowres_cond_img), dim = 1)

View File

@@ -1 +1 @@
__version__ = '1.5.0'
__version__ = '1.4.1'

View File

@@ -26,7 +26,7 @@ setup(
install_requires=[
'accelerate',
'click',
'clip-anytorch>=2.4.0',
'clip-anytorch',
'coca-pytorch>=0.0.5',
'ema-pytorch>=0.0.7',
'einops>=0.4',