mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 00:15:07 +01:00
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
be3bb868bf | ||
|
|
451de34871 | ||
|
|
f22e8c8741 | ||
|
|
87432e93ad | ||
|
|
d167378401 |
12
README.md
12
README.md
@@ -627,6 +627,18 @@ images = dalle2(
|
|||||||
# save your image (in this example, of size 256x256)
|
# save your image (in this example, of size 256x256)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ pip install open-clip-torch
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
from dalle2_pytorch import OpenClipAdapter
|
||||||
|
|
||||||
|
clip = OpenClipAdapter()
|
||||||
|
```
|
||||||
|
|
||||||
Now you'll just have to worry about training the Prior and the Decoder!
|
Now you'll just have to worry about training the Prior and the Decoder!
|
||||||
|
|
||||||
## Inpainting
|
## Inpainting
|
||||||
|
|||||||
@@ -8,6 +8,7 @@ from pathlib import Path
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
from torch.utils.checkpoint import checkpoint
|
||||||
from torch import nn, einsum
|
from torch import nn, einsum
|
||||||
import torchvision.transforms as T
|
import torchvision.transforms as T
|
||||||
|
|
||||||
@@ -108,6 +109,28 @@ def pad_tuple_to_length(t, length, fillvalue = None):
|
|||||||
return t
|
return t
|
||||||
return (*t, *((fillvalue,) * remain_length))
|
return (*t, *((fillvalue,) * remain_length))
|
||||||
|
|
||||||
|
# checkpointing helper function
|
||||||
|
|
||||||
|
def make_checkpointable(fn, **kwargs):
|
||||||
|
if isinstance(fn, nn.ModuleList):
|
||||||
|
return [maybe(make_checkpointable)(el, **kwargs) for el in fn]
|
||||||
|
|
||||||
|
condition = kwargs.pop('condition', None)
|
||||||
|
|
||||||
|
if exists(condition) and not condition(fn):
|
||||||
|
return fn
|
||||||
|
|
||||||
|
@wraps(fn)
|
||||||
|
def inner(*args):
|
||||||
|
input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args])
|
||||||
|
|
||||||
|
if not input_needs_grad:
|
||||||
|
return fn(*args)
|
||||||
|
|
||||||
|
return checkpoint(fn, *args)
|
||||||
|
|
||||||
|
return inner
|
||||||
|
|
||||||
# for controlling freezing of CLIP
|
# for controlling freezing of CLIP
|
||||||
|
|
||||||
def set_module_requires_grad_(module, requires_grad):
|
def set_module_requires_grad_(module, requires_grad):
|
||||||
@@ -339,6 +362,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|||||||
image_embed = self.clip.encode_image(image)
|
image_embed = self.clip.encode_image(image)
|
||||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|
||||||
|
class OpenClipAdapter(BaseClipAdapter):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name = 'ViT-B/32',
|
||||||
|
pretrained = 'laion400m_e32'
|
||||||
|
):
|
||||||
|
import open_clip
|
||||||
|
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
|
||||||
|
|
||||||
|
super().__init__(clip)
|
||||||
|
self.eos_id = 49407
|
||||||
|
|
||||||
|
text_attention_final = self.find_layer('ln_final')
|
||||||
|
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||||
|
self.clip_normalize = preprocess.transforms[-1]
|
||||||
|
self.cleared = False
|
||||||
|
|
||||||
|
def find_layer(self, layer):
|
||||||
|
modules = dict([*self.clip.named_modules()])
|
||||||
|
return modules.get(layer, None)
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
if self.cleared:
|
||||||
|
return
|
||||||
|
|
||||||
|
self.handle()
|
||||||
|
|
||||||
|
def _hook(self, _, inputs, outputs):
|
||||||
|
self.text_encodings = outputs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dim_latent(self):
|
||||||
|
return 512
|
||||||
|
|
||||||
|
@property
|
||||||
|
def image_size(self):
|
||||||
|
return self.clip.visual.image_size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def image_channels(self):
|
||||||
|
return 3
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_text_len(self):
|
||||||
|
return self.clip.context_length
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def embed_text(self, text):
|
||||||
|
text = text[..., :self.max_text_len]
|
||||||
|
|
||||||
|
is_eos_id = (text == self.eos_id)
|
||||||
|
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||||
|
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||||
|
assert not self.cleared
|
||||||
|
|
||||||
|
text_embed = self.clip.encode_text(text)
|
||||||
|
text_encodings = self.text_encodings
|
||||||
|
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
||||||
|
del self.text_encodings
|
||||||
|
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def embed_image(self, image):
|
||||||
|
assert not self.cleared
|
||||||
|
image = self.validate_and_resize_image(image)
|
||||||
|
image = self.clip_normalize(image)
|
||||||
|
image_embed = self.clip.encode_image(image)
|
||||||
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|
||||||
# classifier free guidance functions
|
# classifier free guidance functions
|
||||||
|
|
||||||
def prob_mask_like(shape, prob, device):
|
def prob_mask_like(shape, prob, device):
|
||||||
@@ -701,11 +793,12 @@ class Attention(nn.Module):
|
|||||||
dropout = 0.,
|
dropout = 0.,
|
||||||
causal = False,
|
causal = False,
|
||||||
rotary_emb = None,
|
rotary_emb = None,
|
||||||
pb_relax_alpha = 128
|
cosine_sim = True,
|
||||||
|
cosine_sim_scale = 16
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.pb_relax_alpha = pb_relax_alpha
|
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
self.cosine_sim = cosine_sim
|
||||||
|
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
@@ -745,6 +838,13 @@ class Attention(nn.Module):
|
|||||||
k = torch.cat((nk, k), dim = -2)
|
k = torch.cat((nk, k), dim = -2)
|
||||||
v = torch.cat((nv, v), dim = -2)
|
v = torch.cat((nv, v), dim = -2)
|
||||||
|
|
||||||
|
# whether to use cosine sim
|
||||||
|
|
||||||
|
if self.cosine_sim:
|
||||||
|
q, k = map(l2norm, (q, k))
|
||||||
|
|
||||||
|
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||||
|
|
||||||
# calculate query / key similarities
|
# calculate query / key similarities
|
||||||
|
|
||||||
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
||||||
@@ -770,9 +870,6 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
# attention
|
# attention
|
||||||
|
|
||||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
|
||||||
sim = sim * self.pb_relax_alpha
|
|
||||||
|
|
||||||
attn = sim.softmax(dim = -1)
|
attn = sim.softmax(dim = -1)
|
||||||
attn = self.dropout(attn)
|
attn = self.dropout(attn)
|
||||||
|
|
||||||
@@ -1485,7 +1582,8 @@ class LinearAttention(nn.Module):
|
|||||||
self,
|
self,
|
||||||
dim,
|
dim,
|
||||||
dim_head = 32,
|
dim_head = 32,
|
||||||
heads = 8
|
heads = 8,
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
@@ -1604,6 +1702,7 @@ class Unet(nn.Module):
|
|||||||
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||||
sparse_attn = False,
|
sparse_attn = False,
|
||||||
cosine_sim_cross_attn = False,
|
cosine_sim_cross_attn = False,
|
||||||
|
cosine_sim_self_attn = False,
|
||||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||||
cond_on_text_encodings = False,
|
cond_on_text_encodings = False,
|
||||||
max_text_len = 256,
|
max_text_len = 256,
|
||||||
@@ -1622,6 +1721,7 @@ class Unet(nn.Module):
|
|||||||
pixel_shuffle_upsample = True,
|
pixel_shuffle_upsample = True,
|
||||||
final_conv_kernel_size = 1,
|
final_conv_kernel_size = 1,
|
||||||
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper
|
||||||
|
checkpoint_during_training = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -1724,7 +1824,7 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
# attention related params
|
# attention related params
|
||||||
|
|
||||||
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
|
||||||
|
|
||||||
self_attn = cast_tuple(self_attn, num_stages)
|
self_attn = cast_tuple(self_attn, num_stages)
|
||||||
|
|
||||||
@@ -1832,6 +1932,10 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
|
zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it
|
||||||
|
|
||||||
|
# whether to checkpoint during training
|
||||||
|
|
||||||
|
self.checkpoint_during_training = checkpoint_during_training
|
||||||
|
|
||||||
# if the current settings for the unet are not correct
|
# if the current settings for the unet are not correct
|
||||||
# for cascading DDPM, then reinit the unet with the right settings
|
# for cascading DDPM, then reinit the unet with the right settings
|
||||||
def cast_model_parameters(
|
def cast_model_parameters(
|
||||||
@@ -1889,7 +1993,8 @@ class Unet(nn.Module):
|
|||||||
image_cond_drop_prob = 0.,
|
image_cond_drop_prob = 0.,
|
||||||
text_cond_drop_prob = 0.,
|
text_cond_drop_prob = 0.,
|
||||||
blur_sigma = None,
|
blur_sigma = None,
|
||||||
blur_kernel_size = None
|
blur_kernel_size = None,
|
||||||
|
disable_checkpoint = False
|
||||||
):
|
):
|
||||||
batch_size, device = x.shape[0], x.device
|
batch_size, device = x.shape[0], x.device
|
||||||
|
|
||||||
@@ -2011,17 +2116,29 @@ class Unet(nn.Module):
|
|||||||
c = self.norm_cond(c)
|
c = self.norm_cond(c)
|
||||||
mid_c = self.norm_mid_cond(mid_c)
|
mid_c = self.norm_mid_cond(mid_c)
|
||||||
|
|
||||||
|
# gradient checkpointing
|
||||||
|
|
||||||
|
can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint
|
||||||
|
apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity
|
||||||
|
|
||||||
|
# make checkpointable modules
|
||||||
|
|
||||||
|
init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)]
|
||||||
|
|
||||||
|
can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock)
|
||||||
|
downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)]
|
||||||
|
|
||||||
# initial resnet block
|
# initial resnet block
|
||||||
|
|
||||||
if exists(self.init_resnet_block):
|
if exists(init_resnet_block):
|
||||||
x = self.init_resnet_block(x, t)
|
x = init_resnet_block(x, t)
|
||||||
|
|
||||||
# go through the layers of the unet, down and up
|
# go through the layers of the unet, down and up
|
||||||
|
|
||||||
down_hiddens = []
|
down_hiddens = []
|
||||||
up_hiddens = []
|
up_hiddens = []
|
||||||
|
|
||||||
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in self.downs:
|
for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs:
|
||||||
if exists(pre_downsample):
|
if exists(pre_downsample):
|
||||||
x = pre_downsample(x)
|
x = pre_downsample(x)
|
||||||
|
|
||||||
@@ -2037,16 +2154,16 @@ class Unet(nn.Module):
|
|||||||
if exists(post_downsample):
|
if exists(post_downsample):
|
||||||
x = post_downsample(x)
|
x = post_downsample(x)
|
||||||
|
|
||||||
x = self.mid_block1(x, t, mid_c)
|
x = mid_block1(x, t, mid_c)
|
||||||
|
|
||||||
if exists(self.mid_attn):
|
if exists(mid_attn):
|
||||||
x = self.mid_attn(x)
|
x = mid_attn(x)
|
||||||
|
|
||||||
x = self.mid_block2(x, t, mid_c)
|
x = mid_block2(x, t, mid_c)
|
||||||
|
|
||||||
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1)
|
||||||
|
|
||||||
for init_block, resnet_blocks, attn, upsample in self.ups:
|
for init_block, resnet_blocks, attn, upsample in ups:
|
||||||
x = connect_skip(x)
|
x = connect_skip(x)
|
||||||
x = init_block(x, t, c)
|
x = init_block(x, t, c)
|
||||||
|
|
||||||
@@ -2063,7 +2180,7 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
x = torch.cat((x, r), dim = 1)
|
x = torch.cat((x, r), dim = 1)
|
||||||
|
|
||||||
x = self.final_resnet_block(x, t)
|
x = final_resnet_block(x, t)
|
||||||
|
|
||||||
if exists(lowres_cond_img):
|
if exists(lowres_cond_img):
|
||||||
x = torch.cat((x, lowres_cond_img), dim = 1)
|
x = torch.cat((x, lowres_cond_img), dim = 1)
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '1.4.2'
|
__version__ = '1.5.0'
|
||||||
|
|||||||
Reference in New Issue
Block a user