mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 13:54:21 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
451de34871 | ||
|
|
f22e8c8741 | ||
|
|
87432e93ad | ||
|
|
d167378401 |
12
README.md
12
README.md
@@ -627,6 +627,18 @@ images = dalle2(
|
|||||||
# save your image (in this example, of size 256x256)
|
# save your image (in this example, of size 256x256)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Alternatively, you can also use <a href="https://github.com/mlfoundations/open_clip">Open Clip</a>
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ pip install open-clip-torch
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
from dalle2_pytorch import OpenClipAdapter
|
||||||
|
|
||||||
|
clip = OpenClipAdapter()
|
||||||
|
```
|
||||||
|
|
||||||
Now you'll just have to worry about training the Prior and the Decoder!
|
Now you'll just have to worry about training the Prior and the Decoder!
|
||||||
|
|
||||||
## Inpainting
|
## Inpainting
|
||||||
|
|||||||
@@ -339,6 +339,75 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|||||||
image_embed = self.clip.encode_image(image)
|
image_embed = self.clip.encode_image(image)
|
||||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|
||||||
|
class OpenClipAdapter(BaseClipAdapter):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name = 'ViT-B/32',
|
||||||
|
pretrained = 'laion400m_e32'
|
||||||
|
):
|
||||||
|
import open_clip
|
||||||
|
clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained)
|
||||||
|
|
||||||
|
super().__init__(clip)
|
||||||
|
self.eos_id = 49407
|
||||||
|
|
||||||
|
text_attention_final = self.find_layer('ln_final')
|
||||||
|
self.handle = text_attention_final.register_forward_hook(self._hook)
|
||||||
|
self.clip_normalize = preprocess.transforms[-1]
|
||||||
|
self.cleared = False
|
||||||
|
|
||||||
|
def find_layer(self, layer):
|
||||||
|
modules = dict([*self.clip.named_modules()])
|
||||||
|
return modules.get(layer, None)
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
if self.cleared:
|
||||||
|
return
|
||||||
|
|
||||||
|
self.handle()
|
||||||
|
|
||||||
|
def _hook(self, _, inputs, outputs):
|
||||||
|
self.text_encodings = outputs
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dim_latent(self):
|
||||||
|
return 512
|
||||||
|
|
||||||
|
@property
|
||||||
|
def image_size(self):
|
||||||
|
return self.clip.visual.image_size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def image_channels(self):
|
||||||
|
return 3
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_text_len(self):
|
||||||
|
return self.clip.context_length
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def embed_text(self, text):
|
||||||
|
text = text[..., :self.max_text_len]
|
||||||
|
|
||||||
|
is_eos_id = (text == self.eos_id)
|
||||||
|
text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0
|
||||||
|
text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True)
|
||||||
|
assert not self.cleared
|
||||||
|
|
||||||
|
text_embed = self.clip.encode_text(text)
|
||||||
|
text_encodings = self.text_encodings
|
||||||
|
text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.)
|
||||||
|
del self.text_encodings
|
||||||
|
return EmbeddedText(l2norm(text_embed.float()), text_encodings.float())
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def embed_image(self, image):
|
||||||
|
assert not self.cleared
|
||||||
|
image = self.validate_and_resize_image(image)
|
||||||
|
image = self.clip_normalize(image)
|
||||||
|
image_embed = self.clip.encode_image(image)
|
||||||
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|
||||||
# classifier free guidance functions
|
# classifier free guidance functions
|
||||||
|
|
||||||
def prob_mask_like(shape, prob, device):
|
def prob_mask_like(shape, prob, device):
|
||||||
@@ -701,11 +770,12 @@ class Attention(nn.Module):
|
|||||||
dropout = 0.,
|
dropout = 0.,
|
||||||
causal = False,
|
causal = False,
|
||||||
rotary_emb = None,
|
rotary_emb = None,
|
||||||
pb_relax_alpha = 128
|
cosine_sim = True,
|
||||||
|
cosine_sim_scale = 16
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.pb_relax_alpha = pb_relax_alpha
|
self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5)
|
||||||
self.scale = dim_head ** -0.5 * (pb_relax_alpha ** -1)
|
self.cosine_sim = cosine_sim
|
||||||
|
|
||||||
self.heads = heads
|
self.heads = heads
|
||||||
inner_dim = dim_head * heads
|
inner_dim = dim_head * heads
|
||||||
@@ -745,6 +815,13 @@ class Attention(nn.Module):
|
|||||||
k = torch.cat((nk, k), dim = -2)
|
k = torch.cat((nk, k), dim = -2)
|
||||||
v = torch.cat((nv, v), dim = -2)
|
v = torch.cat((nv, v), dim = -2)
|
||||||
|
|
||||||
|
# whether to use cosine sim
|
||||||
|
|
||||||
|
if self.cosine_sim:
|
||||||
|
q, k = map(l2norm, (q, k))
|
||||||
|
|
||||||
|
q, k = map(lambda t: t * math.sqrt(self.scale), (q, k))
|
||||||
|
|
||||||
# calculate query / key similarities
|
# calculate query / key similarities
|
||||||
|
|
||||||
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
sim = einsum('b h i d, b j d -> b h i j', q, k)
|
||||||
@@ -770,9 +847,6 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
# attention
|
# attention
|
||||||
|
|
||||||
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
|
||||||
sim = sim * self.pb_relax_alpha
|
|
||||||
|
|
||||||
attn = sim.softmax(dim = -1)
|
attn = sim.softmax(dim = -1)
|
||||||
attn = self.dropout(attn)
|
attn = self.dropout(attn)
|
||||||
|
|
||||||
@@ -1485,7 +1559,8 @@ class LinearAttention(nn.Module):
|
|||||||
self,
|
self,
|
||||||
dim,
|
dim,
|
||||||
dim_head = 32,
|
dim_head = 32,
|
||||||
heads = 8
|
heads = 8,
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
@@ -1604,6 +1679,7 @@ class Unet(nn.Module):
|
|||||||
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||||
sparse_attn = False,
|
sparse_attn = False,
|
||||||
cosine_sim_cross_attn = False,
|
cosine_sim_cross_attn = False,
|
||||||
|
cosine_sim_self_attn = False,
|
||||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||||
cond_on_text_encodings = False,
|
cond_on_text_encodings = False,
|
||||||
max_text_len = 256,
|
max_text_len = 256,
|
||||||
@@ -1724,7 +1800,7 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
# attention related params
|
# attention related params
|
||||||
|
|
||||||
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head)
|
attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn)
|
||||||
|
|
||||||
self_attn = cast_tuple(self_attn, num_stages)
|
self_attn = cast_tuple(self_attn, num_stages)
|
||||||
|
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '1.4.2'
|
__version__ = '1.4.6'
|
||||||
|
|||||||
Reference in New Issue
Block a user