mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
9 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
680dfc4d93 | ||
|
|
b6fecae91a | ||
|
|
dab2f74650 | ||
|
|
1e173f4c66 | ||
|
|
410a6144e1 | ||
|
|
c6c3882dc1 | ||
|
|
512b52bd78 | ||
|
|
147c156c8a | ||
|
|
40843bcc21 |
@@ -9,7 +9,7 @@
|
||||
"dim_mults": [1, 2, 4, 8],
|
||||
"attn_dim_head": 16,
|
||||
"attn_heads": 4,
|
||||
"self_attn": [false, true, true, true]
|
||||
"self_attn": [false, true, true, true]
|
||||
}
|
||||
],
|
||||
"clip": {
|
||||
|
||||
@@ -1,10 +1,3 @@
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
if version.parse(torch.__version__) >= version.parse('2.0.0'):
|
||||
from einops._torch_specific import allow_ops_in_compiled_graph
|
||||
allow_ops_in_compiled_graph()
|
||||
|
||||
from dalle2_pytorch.version import __version__
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter, OpenClipAdapter
|
||||
|
||||
@@ -39,11 +39,11 @@ class TrainSplitConfig(BaseModel):
|
||||
test: float = 0.1
|
||||
|
||||
@model_validator(mode = 'after')
|
||||
def validate_all(self):
|
||||
def validate_all(self, m):
|
||||
actual_sum = sum([*dict(self).values()])
|
||||
if actual_sum != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0. Found: {actual_sum}')
|
||||
return fields
|
||||
raise ValueError(f'{dict(self).keys()} must sum to 1.0. Found: {actual_sum}')
|
||||
return self
|
||||
|
||||
class TrackerLogConfig(BaseModel):
|
||||
log_type: str = 'console'
|
||||
@@ -90,7 +90,7 @@ class TrackerConfig(BaseModel):
|
||||
data_path: str = '.tracker_data'
|
||||
overwrite_data_path: bool = False
|
||||
log: TrackerLogConfig
|
||||
load: Optional[TrackerLoadConfig]
|
||||
load: Optional[TrackerLoadConfig] = None
|
||||
save: Union[List[TrackerSaveConfig], TrackerSaveConfig]
|
||||
|
||||
def create(self, full_config: BaseModel, extra_config: dict, dummy_mode: bool = False) -> Tracker:
|
||||
@@ -115,7 +115,7 @@ class TrackerConfig(BaseModel):
|
||||
class AdapterConfig(BaseModel):
|
||||
make: str = "openai"
|
||||
model: str = "ViT-L/14"
|
||||
base_model_kwargs: Dict[str, Any] = None
|
||||
base_model_kwargs: Optional[Dict[str, Any]] = None
|
||||
|
||||
def create(self):
|
||||
if self.make == "openai":
|
||||
@@ -134,8 +134,8 @@ class AdapterConfig(BaseModel):
|
||||
class DiffusionPriorNetworkConfig(BaseModel):
|
||||
dim: int
|
||||
depth: int
|
||||
max_text_len: int = None
|
||||
num_timesteps: int = None
|
||||
max_text_len: Optional[int] = None
|
||||
num_timesteps: Optional[int] = None
|
||||
num_time_embeds: int = 1
|
||||
num_image_embeds: int = 1
|
||||
num_text_embeds: int = 1
|
||||
@@ -158,7 +158,7 @@ class DiffusionPriorNetworkConfig(BaseModel):
|
||||
return DiffusionPriorNetwork(**kwargs)
|
||||
|
||||
class DiffusionPriorConfig(BaseModel):
|
||||
clip: AdapterConfig = None
|
||||
clip: Optional[AdapterConfig] = None
|
||||
net: DiffusionPriorNetworkConfig
|
||||
image_embed_dim: int
|
||||
image_size: int
|
||||
@@ -195,7 +195,7 @@ class DiffusionPriorTrainConfig(BaseModel):
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.99
|
||||
amp: bool = False
|
||||
warmup_steps: int = None # number of warmup steps
|
||||
warmup_steps: Optional[int] = None # number of warmup steps
|
||||
save_every_seconds: int = 3600 # how often to save
|
||||
eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with
|
||||
best_validation_loss: float = 1e9 # the current best valudation loss observed
|
||||
@@ -228,12 +228,12 @@ class TrainDiffusionPriorConfig(BaseModel):
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple[int]
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
image_embed_dim: Optional[int] = None
|
||||
text_embed_dim: Optional[int] = None
|
||||
cond_on_text_encodings: Optional[bool] = None
|
||||
cond_dim: Optional[int] = None
|
||||
channels: int = 3
|
||||
self_attn: ListOrTuple[int]
|
||||
self_attn: SingularOrIterable[bool] = False
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
init_cross_embed: bool = True
|
||||
@@ -243,14 +243,14 @@ class UnetConfig(BaseModel):
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple[UnetConfig]
|
||||
image_size: int = None
|
||||
image_size: Optional[int] = None
|
||||
image_sizes: ListOrTuple[int] = None
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
clip: Optional[AdapterConfig] = None # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: ListOrTuple[str] = None # None means all cosine
|
||||
beta_schedule: Optional[ListOrTuple[str]] = None # None means all cosine
|
||||
learned_variance: SingularOrIterable[bool] = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
@@ -278,9 +278,9 @@ class DecoderConfig(BaseModel):
|
||||
extra = "allow"
|
||||
|
||||
class DecoderDataConfig(BaseModel):
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
img_embeddings_url: Optional[str] # path to .npy files with embeddings
|
||||
text_embeddings_url: Optional[str] # path to .npy files with embeddings
|
||||
webdataset_base_url: str # path to a webdataset with jpg images
|
||||
img_embeddings_url: Optional[str] = None # path to .npy files with embeddings
|
||||
text_embeddings_url: Optional[str] = None # path to .npy files with embeddings
|
||||
num_workers: int = 4
|
||||
batch_size: int = 64
|
||||
start_shard: int = 0
|
||||
@@ -320,20 +320,20 @@ class DecoderTrainConfig(BaseModel):
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
device: str = 'cuda:0'
|
||||
epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: int = None # Same as above but for validation.
|
||||
epoch_samples: Optional[int] = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite.
|
||||
validation_samples: Optional[int] = None # Same as above but for validation.
|
||||
save_immediately: bool = False
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
|
||||
unet_training_mask: Optional[ListOrTuple[bool]] = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
FID: Dict[str, Any] = None
|
||||
IS: Dict[str, Any] = None
|
||||
KID: Dict[str, Any] = None
|
||||
LPIPS: Dict[str, Any] = None
|
||||
FID: Optional[Dict[str, Any]] = None
|
||||
IS: Optional[Dict[str, Any]] = None
|
||||
KID: Optional[Dict[str, Any]] = None
|
||||
LPIPS: Optional[Dict[str, Any]] = None
|
||||
|
||||
class TrainDecoderConfig(BaseModel):
|
||||
decoder: DecoderConfig
|
||||
@@ -347,11 +347,14 @@ class TrainDecoderConfig(BaseModel):
|
||||
def from_json_path(cls, json_path):
|
||||
with open(json_path) as f:
|
||||
config = json.load(f)
|
||||
print(config)
|
||||
return cls(**config)
|
||||
|
||||
@model_validator(mode = 'after')
|
||||
def check_has_embeddings(cls, values):
|
||||
def check_has_embeddings(self, m):
|
||||
# Makes sure that enough information is provided to get the embeddings specified for training
|
||||
values = dict(self)
|
||||
|
||||
data_config, decoder_config = values.get('data'), values.get('decoder')
|
||||
|
||||
if not exists(data_config) or not exists(decoder_config):
|
||||
@@ -376,4 +379,4 @@ class TrainDecoderConfig(BaseModel):
|
||||
if text_emb_url:
|
||||
assert using_text_embeddings, "Text embeddings are being loaded, but text embeddings are not being conditioned on. This will slow down the dataloader for no reason."
|
||||
|
||||
return values
|
||||
return m
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.15.0'
|
||||
__version__ = '1.15.6'
|
||||
|
||||
2
setup.py
2
setup.py
@@ -30,7 +30,7 @@ setup(
|
||||
'clip-anytorch>=2.5.2',
|
||||
'coca-pytorch>=0.0.5',
|
||||
'ema-pytorch>=0.0.7',
|
||||
'einops>=0.6.1',
|
||||
'einops>=0.7.0',
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
|
||||
@@ -511,7 +511,7 @@ def train(
|
||||
if next_task == 'eval':
|
||||
if exists(evaluate_config):
|
||||
accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40))
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
|
||||
evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.model_dump(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale)
|
||||
if is_master:
|
||||
tracker.log(evaluation, step=step())
|
||||
next_task = 'sample'
|
||||
@@ -548,7 +548,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
|
||||
accelerator.wait_for_everyone() # If nodes arrive at this point at different times they might try to autoresume the current run which makes no sense and will cause errors
|
||||
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
||||
tracker.save_config(config_path, config_name='decoder_config.json')
|
||||
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
|
||||
tracker.add_save_metadata(state_dict_key='config', metadata=config.model_dump())
|
||||
return tracker
|
||||
|
||||
def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
@@ -577,6 +577,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
shards_per_process = len(all_shards) // world_size
|
||||
assert shards_per_process > 0, "Not enough shards to split evenly"
|
||||
my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process]
|
||||
|
||||
dataloaders = create_dataloaders (
|
||||
available_shards=my_shards,
|
||||
img_preproc = config.data.img_preproc,
|
||||
@@ -584,7 +585,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
val_prop = config.data.splits.val,
|
||||
test_prop = config.data.splits.test,
|
||||
n_sample_images=config.train.n_sample_images,
|
||||
**config.data.dict(),
|
||||
**config.data.model_dump(),
|
||||
rank = rank,
|
||||
seed = config.seed,
|
||||
)
|
||||
@@ -635,7 +636,7 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
||||
inference_device=accelerator.device,
|
||||
evaluate_config=config.evaluate,
|
||||
condition_on_text_encodings=conditioning_on_text,
|
||||
**config.train.dict(),
|
||||
**config.train.model_dump(),
|
||||
)
|
||||
|
||||
# Create a simple click command line interface to load the config and start the training
|
||||
|
||||
Reference in New Issue
Block a user