|
|
|
|
@@ -12,10 +12,8 @@ from torch.utils.checkpoint import checkpoint
|
|
|
|
|
from torch import nn, einsum
|
|
|
|
|
import torchvision.transforms as T
|
|
|
|
|
|
|
|
|
|
from einops import rearrange, repeat, reduce
|
|
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack
|
|
|
|
|
from einops.layers.torch import Rearrange
|
|
|
|
|
from einops_exts import rearrange_many, repeat_many, check_shape
|
|
|
|
|
from einops_exts.torch import EinopsToAndFrom
|
|
|
|
|
|
|
|
|
|
from kornia.filters import gaussian_blur2d
|
|
|
|
|
import kornia.augmentation as K
|
|
|
|
|
@@ -669,6 +667,23 @@ class NoiseScheduler(nn.Module):
|
|
|
|
|
return loss
|
|
|
|
|
return loss * extract(self.p2_loss_weight, times, loss.shape)
|
|
|
|
|
|
|
|
|
|
# rearrange image to sequence
|
|
|
|
|
|
|
|
|
|
class RearrangeToSequence(nn.Module):
|
|
|
|
|
def __init__(self, fn):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.fn = fn
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = rearrange(x, 'b c ... -> b ... c')
|
|
|
|
|
x, ps = pack([x], 'b * c')
|
|
|
|
|
|
|
|
|
|
x = self.fn(x)
|
|
|
|
|
|
|
|
|
|
x, = unpack(x, ps, 'b * c')
|
|
|
|
|
x = rearrange(x, 'b ... c -> b c ...')
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
# diffusion prior
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
|
|
|
@@ -867,7 +882,7 @@ class Attention(nn.Module):
|
|
|
|
|
|
|
|
|
|
# add null key / value for classifier free guidance in prior net
|
|
|
|
|
|
|
|
|
|
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b 1 d', b = b)
|
|
|
|
|
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
|
|
|
|
|
k = torch.cat((nk, k), dim = -2)
|
|
|
|
|
v = torch.cat((nv, v), dim = -2)
|
|
|
|
|
|
|
|
|
|
@@ -1629,14 +1644,10 @@ class ResnetBlock(nn.Module):
|
|
|
|
|
self.cross_attn = None
|
|
|
|
|
|
|
|
|
|
if exists(cond_dim):
|
|
|
|
|
self.cross_attn = EinopsToAndFrom(
|
|
|
|
|
'b c h w',
|
|
|
|
|
'b (h w) c',
|
|
|
|
|
CrossAttention(
|
|
|
|
|
dim = dim_out,
|
|
|
|
|
context_dim = cond_dim,
|
|
|
|
|
cosine_sim = cosine_sim_cross_attn
|
|
|
|
|
)
|
|
|
|
|
self.cross_attn = CrossAttention(
|
|
|
|
|
dim = dim_out,
|
|
|
|
|
context_dim = cond_dim,
|
|
|
|
|
cosine_sim = cosine_sim_cross_attn
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
|
|
|
|
|
@@ -1655,8 +1666,15 @@ class ResnetBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
if exists(self.cross_attn):
|
|
|
|
|
assert exists(cond)
|
|
|
|
|
|
|
|
|
|
h = rearrange(h, 'b c ... -> b ... c')
|
|
|
|
|
h, ps = pack([h], 'b * c')
|
|
|
|
|
|
|
|
|
|
h = self.cross_attn(h, context = cond) + h
|
|
|
|
|
|
|
|
|
|
h, = unpack(h, ps, 'b * c')
|
|
|
|
|
h = rearrange(h, 'b ... c -> b c ...')
|
|
|
|
|
|
|
|
|
|
h = self.block2(h)
|
|
|
|
|
return h + self.res_conv(x)
|
|
|
|
|
|
|
|
|
|
@@ -1702,11 +1720,11 @@ class CrossAttention(nn.Module):
|
|
|
|
|
|
|
|
|
|
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
|
|
|
|
|
|
|
|
|
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads)
|
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
|
|
|
|
|
|
|
|
|
|
# add null key / value for classifier free guidance in prior net
|
|
|
|
|
|
|
|
|
|
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b)
|
|
|
|
|
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
|
|
|
|
|
|
|
|
|
k = torch.cat((nk, k), dim = -2)
|
|
|
|
|
v = torch.cat((nv, v), dim = -2)
|
|
|
|
|
@@ -1759,7 +1777,7 @@ class LinearAttention(nn.Module):
|
|
|
|
|
|
|
|
|
|
fmap = self.norm(fmap)
|
|
|
|
|
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
|
|
|
|
q, k, v = rearrange_many((q, k, v), 'b (h c) x y -> (b h) (x y) c', h = h)
|
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
|
|
|
|
|
|
|
|
|
q = q.softmax(dim = -1)
|
|
|
|
|
k = k.softmax(dim = -2)
|
|
|
|
|
@@ -1993,7 +2011,7 @@ class Unet(nn.Module):
|
|
|
|
|
|
|
|
|
|
self_attn = cast_tuple(self_attn, num_stages)
|
|
|
|
|
|
|
|
|
|
create_self_attn = lambda dim: EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(dim, **attn_kwargs)))
|
|
|
|
|
create_self_attn = lambda dim: RearrangeToSequence(Residual(Attention(dim, **attn_kwargs)))
|
|
|
|
|
|
|
|
|
|
# resnet block klass
|
|
|
|
|
|
|
|
|
|
@@ -3230,7 +3248,7 @@ class Decoder(nn.Module):
|
|
|
|
|
learned_variance = self.learned_variance[unet_index]
|
|
|
|
|
b, c, h, w, device, = *image.shape, image.device
|
|
|
|
|
|
|
|
|
|
check_shape(image, 'b c h w', c = self.channels)
|
|
|
|
|
assert image.shape[1] == self.channels
|
|
|
|
|
assert h >= target_image_size and w >= target_image_size
|
|
|
|
|
|
|
|
|
|
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
|
|
|
|
|
|