mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-12 11:34:29 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c56336a104 | ||
|
|
00e07b7d61 | ||
|
|
0069857cf8 | ||
|
|
580274be79 |
@@ -1,3 +1,10 @@
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
if version.parse(torch.__version__) >= version.parse('2.0.0'):
|
||||
from einops._torch_specific import allow_ops_in_compiled_graph
|
||||
allow_ops_in_compiled_graph()
|
||||
|
||||
from dalle2_pytorch.version import __version__
|
||||
from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder
|
||||
from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter, OpenClipAdapter
|
||||
|
||||
@@ -12,10 +12,8 @@ from torch.utils.checkpoint import checkpoint
|
||||
from torch import nn, einsum
|
||||
import torchvision.transforms as T
|
||||
|
||||
from einops import rearrange, repeat, reduce
|
||||
from einops import rearrange, repeat, reduce, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
from einops_exts import rearrange_many, repeat_many, check_shape
|
||||
from einops_exts.torch import EinopsToAndFrom
|
||||
|
||||
from kornia.filters import gaussian_blur2d
|
||||
import kornia.augmentation as K
|
||||
@@ -669,6 +667,23 @@ class NoiseScheduler(nn.Module):
|
||||
return loss
|
||||
return loss * extract(self.p2_loss_weight, times, loss.shape)
|
||||
|
||||
# rearrange image to sequence
|
||||
|
||||
class RearrangeToSequence(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x):
|
||||
x = rearrange(x, 'b c ... -> b ... c')
|
||||
x, ps = pack([x], 'b * c')
|
||||
|
||||
x = self.fn(x)
|
||||
|
||||
x, = unpack(x, ps, 'b * c')
|
||||
x = rearrange(x, 'b ... c -> b c ...')
|
||||
return x
|
||||
|
||||
# diffusion prior
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
@@ -867,7 +882,7 @@ class Attention(nn.Module):
|
||||
|
||||
# add null key / value for classifier free guidance in prior net
|
||||
|
||||
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b 1 d', b = b)
|
||||
nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2))
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
|
||||
@@ -1629,14 +1644,10 @@ class ResnetBlock(nn.Module):
|
||||
self.cross_attn = None
|
||||
|
||||
if exists(cond_dim):
|
||||
self.cross_attn = EinopsToAndFrom(
|
||||
'b c h w',
|
||||
'b (h w) c',
|
||||
CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
self.cross_attn = CrossAttention(
|
||||
dim = dim_out,
|
||||
context_dim = cond_dim,
|
||||
cosine_sim = cosine_sim_cross_attn
|
||||
)
|
||||
|
||||
self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization)
|
||||
@@ -1655,8 +1666,15 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
if exists(self.cross_attn):
|
||||
assert exists(cond)
|
||||
|
||||
h = rearrange(h, 'b c ... -> b ... c')
|
||||
h, ps = pack([h], 'b * c')
|
||||
|
||||
h = self.cross_attn(h, context = cond) + h
|
||||
|
||||
h, = unpack(h, ps, 'b * c')
|
||||
h = rearrange(h, 'b ... c -> b c ...')
|
||||
|
||||
h = self.block2(h)
|
||||
return h + self.res_conv(x)
|
||||
|
||||
@@ -1702,11 +1720,11 @@ class CrossAttention(nn.Module):
|
||||
|
||||
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
||||
|
||||
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
|
||||
|
||||
# add null key / value for classifier free guidance in prior net
|
||||
|
||||
nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b)
|
||||
nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2))
|
||||
|
||||
k = torch.cat((nk, k), dim = -2)
|
||||
v = torch.cat((nv, v), dim = -2)
|
||||
@@ -1759,7 +1777,7 @@ class LinearAttention(nn.Module):
|
||||
|
||||
fmap = self.norm(fmap)
|
||||
q, k, v = self.to_qkv(fmap).chunk(3, dim = 1)
|
||||
q, k, v = rearrange_many((q, k, v), 'b (h c) x y -> (b h) (x y) c', h = h)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v))
|
||||
|
||||
q = q.softmax(dim = -1)
|
||||
k = k.softmax(dim = -2)
|
||||
@@ -1993,7 +2011,7 @@ class Unet(nn.Module):
|
||||
|
||||
self_attn = cast_tuple(self_attn, num_stages)
|
||||
|
||||
create_self_attn = lambda dim: EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(dim, **attn_kwargs)))
|
||||
create_self_attn = lambda dim: RearrangeToSequence(Residual(Attention(dim, **attn_kwargs)))
|
||||
|
||||
# resnet block klass
|
||||
|
||||
@@ -2727,11 +2745,16 @@ class Decoder(nn.Module):
|
||||
if exists(unet_number):
|
||||
unet = self.get_unet(unet_number)
|
||||
|
||||
# devices
|
||||
|
||||
cuda, cpu = torch.device('cuda'), torch.device('cpu')
|
||||
|
||||
self.cuda()
|
||||
|
||||
devices = [module_device(unet) for unet in self.unets]
|
||||
self.unets.cpu()
|
||||
unet.cuda()
|
||||
|
||||
self.unets.to(cpu)
|
||||
unet.to(cuda)
|
||||
|
||||
yield
|
||||
|
||||
@@ -3114,7 +3137,8 @@ class Decoder(nn.Module):
|
||||
distributed = False,
|
||||
inpaint_image = None,
|
||||
inpaint_mask = None,
|
||||
inpaint_resample_times = 5
|
||||
inpaint_resample_times = 5,
|
||||
one_unet_in_gpu_at_time = True
|
||||
):
|
||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||
|
||||
@@ -3137,6 +3161,7 @@ class Decoder(nn.Module):
|
||||
assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size)
|
||||
prev_unet_output_size = self.image_sizes[start_at_unet_number - 2]
|
||||
img = resize_image_to(image, prev_unet_output_size, nearest = True)
|
||||
|
||||
is_cuda = next(self.parameters()).is_cuda
|
||||
|
||||
num_unets = self.num_unets
|
||||
@@ -3146,7 +3171,7 @@ class Decoder(nn.Module):
|
||||
if unet_number < start_at_unet_number:
|
||||
continue # It's the easiest way to do it
|
||||
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda else null_context()
|
||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and one_unet_in_gpu_at_time else null_context()
|
||||
|
||||
with context:
|
||||
# prepare low resolution conditioning for upsamplers
|
||||
@@ -3223,7 +3248,7 @@ class Decoder(nn.Module):
|
||||
learned_variance = self.learned_variance[unet_index]
|
||||
b, c, h, w, device, = *image.shape, image.device
|
||||
|
||||
check_shape(image, 'b c h w', c = self.channels)
|
||||
assert image.shape[1] == self.channels
|
||||
assert h >= target_image_size and w >= target_image_size
|
||||
|
||||
times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from pydantic import BaseModel, validator, model_validator
|
||||
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
|
||||
|
||||
from x_clip import CLIP as XCLIP
|
||||
@@ -38,9 +38,9 @@ class TrainSplitConfig(BaseModel):
|
||||
val: float = 0.15
|
||||
test: float = 0.1
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, fields):
|
||||
actual_sum = sum([*fields.values()])
|
||||
@model_validator(mode = 'after')
|
||||
def validate_all(self):
|
||||
actual_sum = sum([*dict(self).values()])
|
||||
if actual_sum != 1.:
|
||||
raise ValueError(f'{fields.keys()} must sum to 1.0. Found: {actual_sum}')
|
||||
return fields
|
||||
@@ -59,6 +59,7 @@ class TrackerLogConfig(BaseModel):
|
||||
kwargs = self.dict()
|
||||
return create_logger(self.log_type, data_path, **kwargs)
|
||||
|
||||
|
||||
class TrackerLoadConfig(BaseModel):
|
||||
load_from: Optional[str] = None
|
||||
only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming
|
||||
@@ -348,7 +349,7 @@ class TrainDecoderConfig(BaseModel):
|
||||
config = json.load(f)
|
||||
return cls(**config)
|
||||
|
||||
@root_validator
|
||||
@model_validator(mode = 'after')
|
||||
def check_has_embeddings(cls, values):
|
||||
# Makes sure that enough information is provided to get the embeddings specified for training
|
||||
data_config, decoder_config = values.get('data'), values.get('decoder')
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '1.12.3'
|
||||
__version__ = '1.15.0'
|
||||
|
||||
@@ -11,8 +11,7 @@ import torch.nn.functional as F
|
||||
from torch.autograd import grad as torch_grad
|
||||
import torchvision
|
||||
|
||||
from einops import rearrange, reduce, repeat
|
||||
from einops_exts import rearrange_many
|
||||
from einops import rearrange, reduce, repeat, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# constants
|
||||
@@ -408,7 +407,7 @@ class Attention(nn.Module):
|
||||
x = self.norm(x)
|
||||
|
||||
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
||||
|
||||
q = q * self.scale
|
||||
sim = einsum('b h i d, b h j d -> b h i j', q, k)
|
||||
|
||||
5
setup.py
5
setup.py
@@ -30,14 +30,13 @@ setup(
|
||||
'clip-anytorch>=2.5.2',
|
||||
'coca-pytorch>=0.0.5',
|
||||
'ema-pytorch>=0.0.7',
|
||||
'einops>=0.4',
|
||||
'einops-exts>=0.0.3',
|
||||
'einops>=0.6.1',
|
||||
'embedding-reader',
|
||||
'kornia>=0.5.4',
|
||||
'numpy',
|
||||
'packaging',
|
||||
'pillow',
|
||||
'pydantic',
|
||||
'pydantic>=2',
|
||||
'pytorch-warmup',
|
||||
'resize-right>=0.0.2',
|
||||
'rotary-embedding-torch',
|
||||
|
||||
Reference in New Issue
Block a user